基于机器学习的方法,探究了从模拟废水中以鸟粪石的形式回收氮和磷的问题。利用极限梯度提升算法(XGBoost)和随机森林(RF)模型对磷回收率和氮回收率进行单目标和多目标预测,明确了7种工艺条件对鸟粪石结晶的影响。XGBoost在单目标(R2=0.91~0.93)和多目标(R2=0.89)的预测方面表现均优于RF。此外,在P初始浓度为10 mg/L和1 000 mg/L的情况下,通过实验验证了多目标模型的优化解集,得到鸟粪石回收的最佳工艺条件为N∶P比值为1.2∶1,Mg∶P为1∶1,pH为9.5,反应时间为80 min,反应温度为25℃,搅拌速率为240 r/min。
收起-佟颖,蒋绍坚,康冰艳,冷立健,李海龙.废水中鸟粪石回收的机器学习预测和优化[J/OL].能源环境保护:1-10[2023-11-13].https://doi.org/10.20078/j.eep.20231102.
TONG Ying, JIANG Shaojian, KANG Bingyan, LENG Lijian, LI Hailong. Prediction and optimization of struvite recovery from wastewater by machine learning[J/OL].Energy Environmental Protection:1-10[2023-11-13].https://doi.org/10.20078/j.eep.20231102.
TONG Ying, JIANG Shaojian, KANG Bingyan, LENG Lijian, LI Hailong. Prediction and optimization of struvite recovery from wastewater by machine learning[J/OL].Energy Environmental Protection:1-10[2023-11-13].https://doi.org/10.20078/j.eep.20231102.