当前位置:首页 > 论文 > 2023 > 01

论文

机器学习在有机固废全链条处置中的应用进展

收稿日期:2022-12-10 修回日期:2022-12-21 接受日期:2023-03-05

DOI:10.20078/j.eep.20230102

免费下载 免费下载 2023年01期

    摘要:有机固废热转化过程会发生一系列复杂的热化学反应,给深入理解其机理、优化转化过程技术参数及实现产物定向调控等带来挑战。 基于数据驱动的机器学习建模方法可推动有机固废的智能化和精细化处置。 综述了基于机器学习的智能建模方法在有机固废全链条处置中... 展开+
    摘要:

    有机固废热转化过程会发生一系列复杂的热化学反应,给深入理解其机理、优化转化过程技术参数及实现产物定向调控等带来挑战。 基于数据驱动的机器学习建模方法可推动有机固废的智能化和精细化处置。 综述了基于机器学习的智能建模方法在有机固废全链条处置中的应用,总结了机器学习对有机固废上游产生量与理化特性、中游热转化过程及产物特性、下游产物利用与效益评估等的预测并对比了不同模型的适用场景及优缺点,以期构建有机固废全链条智能化处置方案,实现集无害化、减量化、资源化、高值化及智能化于一体的有机固废高效处置模式,为实际固废的有效管理提供一定的指导意义。

    收起-

    作者:

    • 张子杭1
    • 许丹1
    • 胡艳军2
    • 管文洁1
    • 王树荣1,*

    作者简介

    作者简介:张子杭(2000—),男,湖北孝感人,博士生,主要研究方向为生物质和有机固废处置过程的智能化。E-mail:12227022@zju.edu.cn
    通讯作者:王树荣(1972—),男,浙江嵊州人,教授,主要研究方向为生物质和有机固废的热转化利用。E-mail:srwang@zju.edu.cn

    单位

    • 1. 浙江大学 能源清洁利用国家重点实验室
    • 2. 浙江工业大学 能源与动力工程研究所

    关键字

    • 有机固废
    • 热转化
    • 机器学习
    • 全链条处置

    基金项目

    浙江省“领雁”研发攻关计划资助(2022C03092);国家自然科学基金区域创新联合基金(U21A20142)

    引用格式

    张子杭, 许丹, 胡艳军, 等. 机器学习在有机固废全链条处置中的应用进展[J]. 能源环境保护, 2023, 37(1): 184-193.

    ZHANG Zihang, XU Dan, HU Yanjun, et al. Application progress of machine learning in the whole chain disposal of organic solid waste[J]. Energy Environmental Protection, 2023, 37(1): 184-193.

    相关论文

    地址:浙江省杭州市萧山区拱秀路288号煤科大厦
    邮编:311201
    编辑部电话:0571-82989702;19558121964
    编辑部邮箱:office@eep1987.com
    网站版权©《能源环境保护》编辑部  浙ICP备06000902号-4