

孙俊强,杨海洋,曲垚,等.基于群感淬灭的磁性分子印迹聚合物制备及其对信号分子吸附特性研究[J].能源环境保护,2025,39(1):154-164.

SUN Junqiang, YANG Haiyang, QU Yao, et al. Preparation of Magnetic Molecularly Imprinted Polymers Based on Group Sensing Quenching and Their Adsorption Characteristics on Signaling Molecules [J]. Energy Environmental Protection, 2025, 39(1): 154–164.

基于群感淬灭的磁性分子印迹聚合物制备及其 对信号分子吸附特性研究

孙俊强',杨海洋',曲 垚²,余华荣',瞿芳术'.*,万雨轩'

(1. 广州大学 土木工程学院,广东广州 510006; 2. 中城院环境科技股份有限公司,北京 100032) 摘要:在厌氧膜生物反应器(AnMBR)中,微生物的群体感应会加重生物污染,而调控 N-酰基高丝 氨酸内酯(AHLs)浓度对膜污染控制至关重要。基于表面分子印迹技术,本研究选用呋喃酮 (DMHF)作为 AHLs 的结构类似物,采用纳米磁性 Fe₂O₄颗粒作为载体,以甲基丙烯酸(MAA)为 功能单体、偶氮二异丁腈(AIBN)为引发剂,通过表面聚合成功制备了对 DMHF 具有选择吸附性 的磁性分子印迹聚合物(DMHF/SMIP)。利用傅里叶变换红外光谱仪(FTIR)、扫描电子显微镜 (SEM)和振动样品磁强计(VSM)对 DMHF/SMIP 进行了表征,结果表明,成功包裹印迹层的 DMHF/SMIP 粒径均匀、晶型稳定,有较好的超顺磁性并且表面含有大量的印迹空腔。随后,进行 了 DMHF/SMIP 吸附性能及其对膜污染控制的模拟研究。结果显示, DMHF/SMIP 在 50 min 基本 达到吸附平衡,对 DMHF 的最大吸附量可达 85.97 mg/g,吸附过程符合二级动力学及 Langmuir 方 程,表明其主要以化学吸附和单层吸附为主。DMHF/SMIP表现出优异的稳定性和可回收性,在经 过5次吸附-解吸循环后,吸附效率仍可达83.01%。在选择性吸附实验中,DMHF/SMIP对 DMHF 及其结构类似物表现出高度选择识别能力,对 DMHF、4-甲氧基-2,5-二甲基-3(2H)-呋喃酮 和 5-羟甲基糠醛的吸附量分别为 24.09、12.38 和 5.34 mg/g。利用 DMHF/SMIP 吸附特征 AHLs(C₆-HSL), 其吸附量可达 3.93 ug/g, 最后, 在针对 AnMBR 的吸附实验中, DMHF/SMIP 对 C6-HSL 的去除率可达到 34.87%。本研究制备了一种可选择性吸附且易于循环利用的 AHLs 分子 印迹聚合物,为其在水处理中的应用提供了理论基础技术指导。

关键词:磁性分子印迹技术;群感淬灭;信号分子;呋喃酮;选择性吸附

中图分类号: X505 文献标识码: A 文章编号: 2097-4183(2025)01-0154-11

Preparation of Magnetic Molecularly Imprinted Polymers Based on Group Sensing Quenching and Their Adsorption Characteristics on Signaling Molecules

SUN Junqiang¹, YANG Haiyang¹, QU Yao², YU Huarong¹, QU Fangshu^{1,*}, WAN Yuxuan¹

 School of Civil Engineering, Guangzhou University, Guangzhou 510006, China; 2. CUCDE Environmental Technology Co., Ltd., Beijing 100032, China)

Abstract: In the anaerobic membrane bioreactor (AnMBR), quorum sensing by microorganisms

exacerbates biofouling, significantly hindering membrane performance and lifespan. Controlling the concentration of N-acyl homoserine lactones (AHLs) is crucial for membrane fouling control. This study used surface molecular imprinting technology, selecting furanone (DMHF) as a structural analog of AHLs and nano-magnetic Fe₃O₄ particles as the carriers. Using methacrylic acid (MAA) as a functional monomer, and azobisisobutyronitrile (AIBN) as the initiator, a magnetic molecularly imprinted polymer (DMHF/SMIP) with selective adsorption for DMHF was successfully prepared via surface polymerization. The DMHF/SMIP was characterized by using a Fourier transform infrared spectrometer (FTIR), scanning electron microscope (SEM), and vibrating sample magnetometer (VSM). These analyses indicated that the DMHF/SMIP, with a successfully encapsulated imprinting layer, exhibited a uniform particle size, stable crystal form, good superparamagnetism, and numerous surface imprinting cavities. These features enable the DMHF/SMIP to selectively bind to target molecules. Subsequently, the adsorption performance of DMHF/SMIP and its effect on membrane fouling control were evaluated. The results showed that DMHF/SMIP reached adsorption equilibrium in approximately 50 minutes, with a maximum adsorption capacity of 85.97 mg/g for DMHF. The adsorption process followed second-order kinetics and the Langmuir equation, suggesting primarily chemical and monolayer adsorption. This indicates that DMHF/SMIP has a high affinity for DMHF and can effectively remove it from the system. DMHF/SMIP exhibited excellent stability and recyclability, maintaining an adsorption efficiency of 83.01% even after five consecutive adsorption-desorption cycles. This demonstrates the material's robustness and potential for long-term use. In selective adsorption experiments, DMHF/SMIP showed a high degree of selective recognition for DMHF and its structural analogs, with adsorption capacities of 24.09, 12.38, and 5.34 mg/g for DMHF, 4-methoxy-2,5-dimethyl-3(2H)-furanone (mesifurane), and 5-hydroxymethylfurfural, respectively. This selectivity is a key advantage of molecularly imprinted polymers, enabling the targeted removal of specific compounds from complex mixtures. Using DMHF/SMIP to adsorb representative AHLs (C₆-HSL), the adsorption capacity reached 3.93 μ g/g. This suggests that the polymer can effectively capture AHLs, known to contribute to quorum sensing and biofouling. Finally, in the adsorption experiments, the removal rate of C_6 -HSL by DMHF/SMIP reached 34.87%. This significant result demonstrates the polymer's ability to reduce the levels of AHLs in AnMBR systems, potentially mitigating quorum sensing and biofouling. This study prepared a readily recyclable, magnetic molecularly imprinted polymer that selectively adsorbs AHLs, providing a theoretical basis and technical guidance for its application in water treatment. The development of such materials could revolutionize biofouling management in AnMBR systems, leading to more efficient and sustainable wastewater treatment.

Keywords: Magnetic molecular imprinting technology; Quorum quenching; Signaling molecules; Furanone; Selective adsorption

0 引 言

群体感应(Quorum Sensing, QS)是一种普遍 存在于细胞间的化学通信方式,由特定的信号分 子调控,这些信号分子在细菌群体中积累并产生 协同作用,从而触发基因表达^[1-2]。作为革兰氏阴 性菌的主要信号分子,N-酰基高丝氨酸内酯(Acyl Homoserine Lactones, AHLs)调控多种基因表达^[3], 包括生物发光、抗生素合成、胞外酶分泌、生物膜 构建、次级代谢产物合成、DNA 摄取能力及毒力 因子的产生等^[4-7]。在膜生物反应器(MBRs)中,革 兰氏阴性菌释放的 AHLs,特别是 C₆-HSL 和 C₈-HSL,与生物膜形成密切相关^[8-9],降低 C₆-HSL 和 C₈-HSL 的浓度被认为是控制膜生物污染的有效 途径^[10-11]。WANG 等研究了 22 个污水处理厂的 生物膜样本,发现 AHLs 在厌氧、生物量大的内层 生物膜中含量最高^[12],而 HUANG 等则指出氧气 对 AHLs 分泌具有抑制作用^[13],表明厌氧膜生物 反应器(AnMBR)的厌氧条件及高微生物浓度的 特点使得 AHLs 浓度高于好氧条件。

群体淬灭(Quorum Quenching, QQ)能够破坏 微生物细胞间的通讯过程,虽然不会抑制细菌生 长,但能抑制相关基因的表达[14-15]。常见的群体 淬灭手段包括抑制信号分子合成、信号拮抗及通 过酶促反应降解信号分子^[16-17]。例如,降低 LuxI 型合成酶蛋白活性可显著抑制 AHLs 的合成^[18]。 投加与信号分子结构相似的信号拮抗剂作为竞争 性抑制剂,能够减少信号分子与受体的结合。 YAZDANI 等从大蒜中提取大蒜素, 证明其能选择 性地与细胞质中 SidA 受体蛋白结合,从而抑制群 体感应信号传导和生物膜的产生^[19]。此外,直接 投加 QQ 菌或将 QQ 菌固定到海藻酸盐珠内进行 投加,均可成功降低 AnMBR 或 MBR 中的 C₆-HSL 和 C₈-HSL 含量^[8,20]。然而, 目前群体淬灭的 方式中,抑制信号分子合成会影响细菌生理功 能^[7],投加信号分子结构相似物可能会与细菌表面 的非目标分子发生非特异性结合而影响细菌活 性^[21], 投加 QQ 酶或 QQ 菌后其活性及稳定性易 受到环境条件影响^[22]。因此,开发一种选择性明 确、效果稳定、不影响细菌生理功能的 QQ 手段 极为必要。

在水处理领域中,基于抗原-抗体相互作用发展 的分子印迹技术(Molecular Imprinting Technology, MIT)因其选择性识别、良好稳定性、低成本和快 速吸附等优点受到关注[23-24]。已有研究表明,采 用MIT技术制备的聚合物能够实现多种类型特 定目标污染物(Ag⁺、抗生素及有机磷农药)的高选 择性识别与吸附^[25-27]。因此,基于 MIT 技术并选 用合适模板分子制备对 AHLs 具有高效吸附作用 的分子印迹聚合物(Molecularly Imprinted Polymers, MIPs)具有可行性。呋喃酮(DMHF)是食品、化妆 品和烟草行业中常见的添加剂,因与 AHLs 结构 相似,具有作为制备高选择性 AHLs 分子印迹聚 合物模板分子的潜力。前人的研究表明,以 AHLs 结构类似物为模板分子制备的 MIPs 具有选 择性吸附 AHLs 的能力^[16,28]。然而之前的研究仅 针对 MIPs 用于传感器开发及 AHLs 浓度检测^[29-31], 但制备对 AHLs 具有高效选择吸附作用的表面 分子印迹技术(SMIP),实现 QQ 作用以缓解 AnMBR 中膜污染的研究仍十分匮乏。

综上,本研究基于 SMIP 制备选择性吸附 AHLs 的 DMHF/SMIP,系统解析 DMHF/SMIP 的

结构特性, 探究其对 AHLs 的选择吸附性能、稳定性、再生性和可回收性, 并考察 DMHF/SMIP 在 AnMBR 中对 AHLs 的吸附效果, 为控制 AnMBR 污水处理中 AHLs 含量及缓解膜污染提供新的解决方案。

1 材料与方法

1.1 材料及仪器

实验材料包括六水三氯化铁(FeCl₃·6H₂O)、 甲基丙烯酸(MAA)、3-丙基-2-甲基-2-丙烯酸酯 (KH-570)、正硅酸四乙酯(TEOS)、乙二醇二甲基 丙烯酸乙酯(EDGMA)、偶氮二异丁腈(AIBN)、 呋喃酮(DMHF)、乙二醇、无水乙酸钠、NH₃·H₂O (25%~28%),均购自阿拉丁化学试剂有限公司。 此外,甲醇、乙腈为色谱纯,购自德国默克试剂公 司。实验药剂均为分析纯,实验用水为超纯水。

实验仪器及参数如下: 六联水浴恒温电动搅 拌器(JJ-4S, 金坛新瑞仪器厂)、数控超声波清洗 器(KQ5200DB, 昆山市超声仪器有限公司)、数显 恒温振荡器(TH2-82A, 常州奥华仪器有限公司)、 紫外分光光度计(T-1810, 上海精宏实验设备有限 公司)、数显恒温水浴锅(KH-W420, 科析仪器有 限公司)、真空干燥箱(DZF-6 050, 上海一恒科学 仪器有限公司)及抽滤装置(VP-10L, 群安实验仪 器有限公司)。

实验所用厌氧颗粒污泥购于山东利博源环保 材料有限公司,其颗粒直径为 0.2~5.0 mm, 沉降速 度 20~150 m/h, 有效污泥颗粒度≥60%, 实验中将 污泥浓度稀释至 5 g/L, 投加葡萄糖(4 g/L COD)作 为碳源。

1.2 磁性分子印迹聚合物 DMHF/SMIP 的制备

DMHF/SMIP 的制备流程如图 1 所示,称取 6.92 g FeCl₃·6H₂O、9.24 g 乙酸钠加至 140 mL 乙 二醇并机械搅拌 30 min,随后将混合液置于铁氟 龙内衬的反应釜加热至 200 °C 并保持 8 h,产物用 乙醇和蒸馏水交替洗涤 3 次后放入真空干燥箱 (60 °C、24 h)中,获得纳米 Fe₃O₄颗粒。向 200 mL 乙醇、水混合液(体积比为 4 : 1)加入 3 g 的纳米 Fe₃O₄颗粒并超声 20 min。随后缓慢滴加 5 mL NH₃·H₂O, 机械搅拌 5 min 后加入 6 mL TEOS,最 后将烧瓶封口并在室温下搅拌 8 h,产物用乙醇和 蒸馏水交替洗涤 3 次后放入真空干燥箱(60 °C、 24 h)中,即得到 Fe₃O₄@SiO₂。在 480 mL 含有 10% 乙酸的水溶液中加入 2.4 mL 的 KH-570,在

图 1 磁性分子印迹聚合物 DMHF/SMIP 的制备流程 Fig. 1 Preparation process of magnetic molecularly imprinted polymer DMHF/SMIP

室温下以 150 r/min 机械搅拌 5 h。然后加入 3 g Fe₃O₄@SiO₂,在 60 ℃水浴中反应 6 h,产物用乙 醇和蒸馏水交替洗涤 3 次后放入真空干燥箱 (60 ℃、24 h)中,即得到 KH-570/Fe₃O₄@SiO₂。在 200 mL乙腈溶液中加入 0.35 g MAA 和 0.12 g DMHF,超声处理 30 min 后置于 4 ℃的环境中保 存 24 h以进行预聚合。随后,称取 0.2 g 的 KH-570/Fe₃O₄@SiO₂、4.0 g EGDMA 和 20 mg AIBN 加 入混合液中,超声 5 min 后用N₂吹扫 10 min,最后 将烧瓶封口并置于 60 ℃的水浴中机械搅拌 24 h。产物用甲醇和乙酸混合溶剂(体积比为9:1) 进行表面洗脱,随后用乙醇和蒸馏水交替洗涤 3 次后放入真空干燥箱(60 ℃、24 h)中,即得到 DMHF/SMIP。DMHF/SNIP 的制备和上述 DMHF/ SMIP 基本相同, 仅在表面聚合反应的过程中不加 入模板分子 DMHF。

1.3 检测方法

1.3.1 DMHF、Mesifurane、5-Hydroxymethylfurfural 检测

DMHF 采用液相色谱(HPLC, LC-16, 日本)检测, 方法如下: 溶剂 A 为含 0.15% 乙酸的色谱级 水, 溶剂 B 为乙腈; 流速为 0.5 mL/min, 紫外检测 波长为 290 nm。检测时长为 20 min, 在 0~16 min, 溶剂 B 的流动相体积比例由 12% 增加到 30%, 随后在 16~20 min, 溶剂 B 的流动相体积比例由 30% 减少到 12%。4-甲氧基-2,5-二甲基-3(2H)-呋喃酮(Mesifurane)和 5-羟甲基糠醛(5-Hydroxymethylfurfural)的检测采用同样参数, 紫外 检测波长调整为 284 nm。

1.3.2 C₆-HSL 检测

C₆-HSL 通过液相质谱(LC-MS, LCMS-8045, 日本)检测,方法如下:溶剂 A 为含 0.10% 甲酸的 色谱级水,溶剂 B 含 0.10% 甲酸的乙腈;流速为 0.3 mL/min;检测时长为 14.5 min,溶剂 B 的体积 比例在 0~0.5 min 保持 10%, 0.5~2.5 min 升至 60%, 2.5~3.0 min 升至 99%, 3.0~10.5 min 维持在 99%,最后在 10.5~14.5 min 降至 10%。为提高 LC-MS 对 C₆-HSL 检测响应值,前期进行多反应 监测优化,参数见表 1。

表 1 基于多反应监测的 C₆-HSL 参数优化 Table 1 Parameter optimization for C₆-HSL based on multiple reaction monitoring

		•	-	8	
参数	保留时间	离子对	Q_1/V	CE/V	Q_3/V
数值	6.3 min	200.2→99.1	-14.0	-23.0	-17.0
		200.2→44.1	-14.0	-10.0	-20.0

注:Q1为第一级四级杆选择电压,CE为碰撞能,Q3为第三级四级杆选择电压。

1.4 磁性分子印迹聚合物表征

采用傅里叶变换红外光谱(FTIR, Tensor 27, 美国)测试样品的表面官能团;氮气等温吸脱附曲 线(BET, ASAP2460,麦克,美国)检测样品的表面 积,设定脱气时间为 12 h,脱气温度为 180 ℃;扫 描电子显微镜(SEM, CLARA, TESCAN,捷克)检 测样品表面形貌;X 射线光电子能谱(XPS, Nexsa, 赛默飞世尔科技,美国)分析样品表面组成成分; 振动样品磁强计(VSM, ASAP2460,麦克,美国)检 测样品的磁性性能,X 射线衍射(XRD, Empyren, 荷兰)对样品的晶体结构进行表征,检测电流为40 mA,电压为45 kV。

1.5 DMHF/SMIP 吸附实验

吸附动力学实验中,向9组DMHF溶液(5mL, 200mg/L)中分别加入20mgDMHF/SMIP,吸附时 间分别设定为1、2、5、10、15、30、45、90和180min。 吸附完成后使用液相色谱测定样品的DMHF浓 度。等温吸附实验中,向7组DMHF溶液(25、 50、100、200、400、800和1600mg/L)中加入20mg DMHF/SMIP,吸附180min后检测DMHF浓度。 再生性实验中,向 DMHF 溶液(5 mL, 200 mg/L)中加入 20 mg DMHF/SMIP,吸附 180 min 后 用磁体回收 DMHF/SMIP,用甲醇和乙酸混合溶剂 (9:1)洗涤数次。随后,在真空干燥箱(60 ℃、 12 h)干燥用于下一次吸附试验,吸附-解吸实验共 循环 5 次。

选择性吸附实验中,将 20 mg DMHF/SMIP 加 入 DMHF、Mesifurane 和 5-Hydroxymethylfurfural (5 mL, 200 mg/L)溶液中,180 min 后进行液相色 谱检测。此后,将 DMHF/SMIP 替换为 DMHF/SNIP 进行上述实验。针对 AHLs 吸附效果研究中,配 制 25、50、100、200 和 400 nmol/L 的 C₆-HSL 标准 溶液,分别加入 40 mg 的 DMHF/SMIP,吸附 180 min 后用液相质谱测定溶液中 C₆-HSL 的浓度。 随后,为研究 DMHF/SMIP 对 AnMBR 反应器中吸 附 AHLs 能力,在 30 mL AnMBR 厌氧活性污泥投 加 0.16 g 的 DMHF/SMIP 为实验组,不投加 DMHF/SMIP 为 AnMBR 厌氧活性污泥空白对照 组。在 150 r/min、30 °C 的条件下持续震荡,分别 在 30、60、90、120 和 180 min 时用液相质谱测定 上清液中 C₆-HSL 的浓度。

1.6 吸附公式及模型

DMHF/SMIP 的吸附量(Q), 计算公式如下:

$$Q = \frac{(C_0 - C_t)V}{W} \tag{1}$$

式中:Q是吸附量(mg/g), C_0 和 C_t 分别为初始和 *t* 时刻 DMHF 的浓度(mg/L), *V*是吸附溶液的体 积(L), *W*是 DMHF/SMIP 的质量(g)。

用准一级动力学模型(式(2))和准二级动力 学模型(式(3))拟合 DMHF/SMIP 动力学吸附 过程。

$$\ln(Q_{\rm eq} - Q_t) = \ln Q_{\rm 1cal} - K_1 t \qquad (2)$$

$$\frac{t}{Q_{\rm eq}} = \frac{1}{K_2 Q_{\rm 2cal}^2} + \frac{t}{Q_{\rm 2cal}}$$
(3)

式中: Q_{eq} 为吸附平衡时 DMHF/SMIP 的吸附量 (mg/g); Q_t 为 t 时刻 DMHF/SMIP 的吸附量 (mg/g); Q_{1cal} 、 Q_{2cal} 分别为一级动力学模型、二级 动力学模型的理想吸附量(mg/g); t 为吸附时间 (min); $K_1(min^{-1})$ 和 $K_2(mg/(g \cdot min))$ 分别为准一阶 方程和准二阶方程的速率常数。

利用 Langmuir 方程(式(4))和 Freundlich 方 程(式(5))拟合 DMHF/SMIP 的等温吸附数据。

$$\frac{1}{Q_{\rm eq}} = \frac{1}{KC_{\rm eq}Q_{\rm max}} + \frac{1}{Q_{\rm max}} \qquad (4)$$

$$\log Q_{\rm eq} = \log K_{\rm F} + \frac{1}{n} \log C_{\rm eq} \qquad (5)$$

式中: C_{eq} 为吸附平衡时 DMHF 的浓度(mg/g); Q_{max} 为 DMHF/SMIP 和 DMHF/SNIP 对 DMHF 的 饱和吸附量(mg/g); $K(L/\mu mol)$ 和 $K_F(mg/g)$ 分别 为 Langmuir 方程和 Freundlich 方程的吸附平衡常 数, n 为 Freundlich 常数。

2 结果与讨论

2.1 DMHF/SMIP 及 DMHF/SNIP 性能表征

图 2 显示了 Fe_3O_4 、 Fe_3O_4 @SiO₂、KH-570/ Fe₃O₄@SiO₂、DMHF/SMIP的FTIR光谱图。如 图 2(a)所示,4种材料在586 cm⁻¹处显示出明显 的特征峰,与 Fe_3O_4 中Fe—O的伸缩振动相关^[32]。 Fe₃O₄经过正硅酸乙酯处理后,Fe₃O₄@SiO₂在 1087 cm⁻¹处出现的强烈吸收峰归属于Si—O—Si 官能团的伸缩振动^[32],这表明SiO₂成功包覆 了Fe₃O₄纳米颗粒。在经过KH-570硅烷化后, KH-570/Fe₃O₄@SiO₂在1597 cm⁻¹观察到来源于 C=C官能团的伸缩振动的吸收峰^[33]。在完成聚 合反应后,DMHF/SMIP也在1639 cm⁻¹处观测到 C=O官能团吸收峰^[34]。上述DMHF/SMIP制备 过程中出现的特征峰符合各阶段官能团预测结 果,表明其成功制备。

XRD 用于确定 Fe₃O₄ 晶体的结构及其制备过 程中的变化。图 2(b)的结果表明, Fe₃O₄ 样品的衍 射峰出现在 30°、35°、43°、57°和 62°, 对应于标准 PDF 卡(JCPD 卡号 88-0866)上的(200)、(311)、 (400)、(511)和(440)衍射晶面^[35], 证实了 Fe₃O₄ 成功合成。然而 Fe₃O₄、Fe₃O₄@SiO₂、DMHF/SMIP 和 DMHF/SNIP 的衍射峰均出现在 30°、35°、43°、 57°和 62°, 表明 Fe₃O₄ 晶体结构在制备过程中保持 稳定, 证实了磁性分子印迹聚合物的制备过程中 并未改变纳米 Fe₃O₄ 载体晶型结构。

图 2(c)展示了采用 VSM 测量 Fe₃O₄、Fe₃O₄@ SiO₂、DMHF/SMIP 的磁滞回线。结果表明,所有 样品均显示出 S 型曲线并通过原点,无磁滞现象, 展现了优异的超顺磁性。Fe₃O₄的饱和磁化强度 为 7.648×10⁻² A·m²/g,而 Fe₃O₄@SiO₂、DMHF/SMIP 的饱和磁化强度分别降低至 4.072×10⁻² A·m²/g 和 2.040×10⁻² A·m²/g。这是由于在 Fe₃O₄ 表面不断嫁 接的官能基团致使 Fe₃O₄ 磁性纳米颗粒被不断包 裹^[36]。尽管如此, DMHF/SMIP 仍呈现出磁性特 征,并可在 1 min 内被磁体迅速回收。

利用 SEM 观察了 Fe₃O₄、Fe₃O₄@SiO₂、DMHF/ SMIP 和 DMHF/SNIP 的表面形态,结果如图 2 (d)~(g)所示。由图 2(d)可知,纳米 Fe₃O₄ 颗粒表 面呈现粗糙团聚状态,这是由于纳米 Fe₃O₄ 颗粒之 间存在布朗运动而相互接近,同时为了降低表 面 Fe3+、Fe2+和 O2-之间的库仑力和表面能,纳米 Fe₄O₄颗粒之间会产生团聚现象^[37]。在经过 TOES 涂覆后的 Fe₃O₄@SiO₂样品表面变光滑且粒径增 大。Fe₃O₄@SiO₂经过 KH-570 修饰、表面聚合反 应、洗脱剂洗脱后的表面再次变得粗糙,这是 DMHF洗脱后出现吸附孔位所致^[34]。相比之下, 由于未加入 DMHF, 对照组中 DMHF/SNIP 中并 不存在洗脱后的吸附孔位,因而样品表面呈光滑 状态。此外, DMHF/SMIP 的 BET 表面积为 31.63 m²/g, 而 DMHF/SNIP 的 BET 表面积为 23.31 m²/g, 进一步解释了2种材料的 SEM 图像光滑度差异 是洗脱后是否存在吸附孔位导致的[38]。

利用 XPS 对 Fe₃O₄、Fe₃O₄@SiO₂、DMHF/SMIP 表面进行元素分析,结果见表 2,在 Fe₃O₄@SiO₂表 面嫁接 SiO₂ 后,其表面的 Si 元素占比升至 26.93%, 而 O 元素含量从 47.24% 升至 60.72%,表面 Fe、 C 元素占比大幅下降,说明 SiO₂ 成功包覆了 Fe₃O₄ 纳米颗粒,而 Fe₃O₄@SiO₂ 经过硅烷化及表面聚合 反应后, DMHF/SMIP 表面以 C、O 元素为主,这是 由于 MAA 和 EGDMA 是 DMHF/SMIP 表面聚合 反应的功能单体及交联剂,二者在 DMHF/SMIP 表面形成印迹层。

表 2 Fe₃O₄、Fe₃O₄@SiO₂、DMHF/SMIP 的 XPS 元素分析 Table 2 XPS elemental analysis of Fe₃O₄,

Fe₃O₄@SiO₂, and DMHF/SMIP

%

样品	W _C	w _o	$w_{\rm Fe}$	$w_{\rm Si}$
Fe_3O_4	24.78	47.24	27.98	0
Fe ₃ O ₄ @SiO ₂	11.35	60.72	1.00	26.93
DMHF/SMIP	71.22	27.51	0.42	0.85

2.2 DMHF/SMIP 的吸附动力学

为评估 DMHF/SMIP 的吸附性能,对其进行 动力学吸附实验。结果如图 3(a)(b)所示,吸附初 期 DMHF/SMIP 的吸附量-时间曲线斜率较大, 45 min 之后曲线斜率逐渐变缓。DMHF/SMIP 对 DMHF 的去除率与其吸附量有相同的变化趋势。 这是由于在初始吸附阶段, DMHF/SMIP 的表面上 具有大量羧基及与 DMHF 形状、结构相同的吸附 孔位^[39-40], 孔位上的羧基可与单个 DMHF 分子形 成多个氢键,使得 DMHF 在 DMHF/SMIP 表面被 快速吸附,随着吸附进行,当外部印迹位点被大量 占据时, DMHF 需被运送到 DMHF/SMIP 的内层 被吸附,此时被吸附在 DMHF/SMIP 外孔的 DMHF 会阻碍传质过程,吸附的空间阻力增大使得吸附 速率明显下降,直至达到吸附动态平衡^[35]。

图 3(c)(d)是一级动力学及二级动力学的拟

图 3 DMHF/SMIP 吸附动力学及模型拟合 Fig. 3 DMHF/SMIP adsorption kinetics and model fitting

合曲线,可以看出,DMHF/SMIP 对一级动力学模型有较好的拟合结果,二级动力学模型的相关系数更高,说明 DMHF/SMIP 以化学吸附为主,物理吸附在吸附过程中也有一定贡献^[39],这和 DMHF/SMIP 上印迹位点以氢键形式与目标化合物结合进行吸附的原理相符^[41]。

2.3 DMHF/SMIP 的吸附热力学

为研究磁性分子印迹聚合物在吸附过程中的 热力学特性、参数及规律,对DMHF/SMIP和 DMHF/SNIP进行了热力学吸附实验,结果如图4 (a)(b)所示。DMHF浓度高于800 mg/L时, DMHF/SMIP的吸附量随浓度变化开始放缓,在 DMHF 浓度为1600 mg/L时,实验中的最大吸附 量为85.97 mg/g。在DMHF浓度为25~400 mg/L 时,DMHF/SNIP吸附量在0.64~2.51 mg/g之间。 虽然DMHF/SMIP和DMHF/SNIP表面成分相同, 但二者对DMHF 吸附能力存在较大差异。这是 因为DMHF/SMIP和DMHF/SNIP表面成分相同, 的MHF/SNIP印表面具有大量的吸附孔位,而 DMHF/SNIP印迹层上虽存在羧基但没有吸附位 点,只具有微弱的化学、物理吸附能力,产生非特 异性吸附。

图 4(c)(d)中 DMHF/SMIP 对 Langmuir 模型

的相关系数更高,说明 DMHF/SMIP 更符合单层 吸附的假设^[42],同时 Freundlich 也有不错的拟合效 果,说明材料吸附行为存在多样性,吸附初期以单 分子层吸附为主,而当吸附量接近饱和吸附量时, DMHF/SMIP 也展现出一定的多分子层吸附特 点^[34]。分析动力学及热力学拟合结果可知,在吸 附初期,由于 DMHF/SMIP 的吸附孔位只存在于 表面,且需与 DMHF 形成氢键进行吸附,故 DMHF/ SMIP 对 DMHF 的吸附主要是以单分子层吸附、 化学吸附的形式进行的。当吸附量接近饱和吸附, DMHF/SMIP 表面的吸附孔位被大量占据,这时展 现出较弱的多分子层吸附、物理吸附的特性^[43]。

2.4 DMHF/SMIP 的再生性和选择性吸附效能

DMHF/SMIP 以 Fe_3O_4 为载体, 在吸附饱和 后, 可通过甲醇和乙酸混合溶剂(9:1)进行 DMHF 洗脱, 使 DMHF/SMIP 再生。如图 5(a)所 示, 经过 5 次解吸附后, DMHF/SMIP 的吸附效能 达到 83.01%, 这说明 DMHF/SMIP 依旧保有良好 的吸附能力。为探究 DMHF/SMIP 的吸附选择 性, 对比 DMHF/SMIP 对 DMHF 及其结构类似物 (Mesifurane)、非结构类似物(5-Hydroxymethylfurfural) 的吸附效能差异。如图 5(b) 所示,

DMHF/SMIP 对 DMHF 的吸附量为 24.09 mg/g, 对 DMHF 的结构类似物 Mesifurane 的吸附量为 12.38 mg/g, 说明 DMHF/SMIP 对 DMHF 具有优异

的吸附效果,且对 DMHF 结构类似物 Mesifurane 具有一定的识别和吸附能力^[42],表明 DMHF/ SMIP 吸附 AHLs 具有可行性。对 DMHF 的非结 构类似物 5-Hydroxymethy的吸附量仅为 5.34 $mg \cdot g^{-1}$,证明结构相似度降低吸附量也随之下降。此外, DMHF/SMIP 表面具有多孔结构及丰富的氢键形成位点,使得可形成氢键的 5-Hydroxymethy 被少量吸附。相比之下,未具有多孔结构的 DMHF/SNIP 对 DMHF、Mesifurane 和 5-Hydroxymethy 的吸附量仅为 2.19、1.77 和 1.54 $mg \cdot g^{-1}$ 。

2.5 DMHF/SMIP 对 AHLs 吸附作用

AHLs 由高丝氨酸内酯环和一个酰基侧链组 成,其中酰基侧链的碳链长度、饱和度可变化,从 而形成多种不同但结构相似的 AHLs,其中 C₆-HSL 被证明和生物膜的形成密切相关。为探究 DMHF/SMIP 对 AHLs 的吸附效果,本实验向不同 浓度的 C₆-HSL 溶液中投加 DMHF/SMIP,利用液 相质谱检测 C₆-HSL 剩余浓度并计算吸附量。结 果如图 6(a)所示,当 C_6 -HSL 浓度由 25 nmol·L⁻¹ 上升到 400 nmol·L⁻¹, DMHF/SMIP 对 C_6 -HSL 的吸 附量从 0.35 μ g·g⁻¹上升到 3.93 μ g·g⁻¹,这证明了 DMHF/SMIP 对 C_6 -HSL 有较好的吸附能力。本实 验进一步考察 DMHF/SMIP 对 AnMBR 污泥中 C_6 -HSL 的吸附效果。结果如图 6(b)所示,相比于对 照组, 投加 DMHF/SMIP 组的 C_6 -HSL 的浓度有所 下降, 其效果在 120 min 后趋向稳定。在吸附时间 为 180 min 时, DMHF/SMIP 组内 C_6 -HSL 浓度为 27.43 nmol·L⁻¹, 对照组内 C_6 -HSL 浓度为 42.12 nmol·L⁻¹, 可见在 AnMBR 污泥中投加 DMHF/ SMIP 可吸附 34.87% 的 AHLs, 表明 DMHF/SMIP 具有在 AnMBR 中应用以实现群体感应淬灭,进 而缓解膜生物污染的潜力。

图 6 DMHF/SMIP 对 C₆-HSL 吸附 Fig. 6 DMHF/SMIP adsorption of C₆-HSL

3 结 论

针对 AnMBR 中群体感应引起的膜污染,成 功合成了一种以 DMHF 为模板分子的新型磁性 分子印迹聚合物 DMHF/SMIP,并开展了吸附性能 和膜污染控制效能研究,主要结论如下。

(1)实验制备的 DMHF/SMIP 具有结构稳定、 吸附容量大、选择性高、可重复回收利用等优点。

(2) DMHF/SMIP 在 1 600 mg·L⁻¹ 的 DMHF 溶 液中最大吸附量为 85.97 mg·g⁻¹, 经过 5 次循环的 吸附-解吸试验, DMHF/SMIP 的吸附能力仍可保 留 83.01%。

(3)DMHF/SMIP 的吸附过程与二级动力学模型及 Langmuir 模型拟合结果更好,说明其以化学、单层吸附为主。

(4) DMHF/SMIP 对 DMHF 具有高度的选择 识别能力, 对 DMHF 的结构类似物具有一定的吸 附作用。

(5) DMHF/SMIP 对 AnMBR 污泥中 AHLs 具 有较好的吸附效能, 在吸附时间为 180 min 时, 投 加 DMHF/SMIP 反应组对 C₆-HSL 的去除率比对 照组提高了 34.87%, 具有突出的控制微生物群体 感应以及膜污染的潜能。

参考文献 (References):

- MUKHERJEE S, BASSLER B L. Bacterial quorum sensing in complex and dynamically changing environments[J]. Nature Reviews Microbiology, 2019, 17(6): 371-382.
- [2] ABISADO R G, BENOMAR S, KLAUS J R, et al. Bacterial quorum sensing and microbial community interactions[J]. mBio, 2018, 9(3): e02331-17.

- [3] CHURCHILL M E A, SIBHATU H M, UHLSON C L. Defining the structure and function of acyl-homoserine lactone autoinducers[J]. Methods in Molecular Biology, 2011, 692: 159-171.
- [4] NG W L, BASSLER B L. Bacterial quorum-sensing network architectures[J]. Annual Review of Genetics, 2009, 43: 197-222.
- [5] VASHISTHA A, SHARMA N, NANAJI Y, et al. Quorum sensing inhibitors as therapeutics: Bacterial biofilm inhibition[J]. Bioorganic Chemistry, 2023, 136: 106551.
- [6] DEFOIRDT T. Quorum-sensing systems as targets for antivirulence therapy[J]. Trends in Microbiology, 2018, 26(4): 313-328.
- [7] GRANDCLÉMENT C, TANNIÈRES M, MORÉRA S, et al. Quorum quenching: Role in nature and applied developments[J]. FEMS Microbiology Reviews, 2016, 40(1): 86-116.
- [8] KIM S R, OH H S, JO S J, et al. Biofouling control with bead-entrapped quorum quenching bacteria in membrane bioreactors: Physical and biological effects[J]. Environmental Science & Technology, 2013, 47(2): 836-842.
- [9] YEON K M, CHEONG W S, OH H S, et al. Quorum sensing: A new biofouling control paradigm in a membrane bioreactor for advanced wastewater treatment[J]. Environmental Science & Technology, 2009, 43(2): 380-385.
- [10] SUN Yuepeng, GUAN Yuntao, WANG Dan, et al. Potential roles of acyl homoserine lactone based quorum sensing in sequencing batch nitrifying biofilm reactors with or without the addition of organic carbon[J]. Bioresource Technology, 2018, 259: 136-145.
- [11] LIU Jianbo, ENG C Y, HO J S, et al. Quorum quenching in anaerobic membrane bioreactor for fouling control[J]. Water Research, 2019, 156: 159-167.
- [12] WANG Jinfeng, LIU Qiuju, HU Haidong, et al. Insight into mature biofilm quorum sensing in full-scale wastewater treatment plants[J]. Chemosphere, 2019, 234: 310-317.
- [13] HUANG Yili, LU Zejia, JIANG Tingting, et al. Oxygen availability affects the synthesis of quorum sensing signal in the facultative anaerobe *Novosphingobium* pentaromativorans US6-1[J]. Applied Microbiology and Biotechnology, 2021, 105(3): 1191-1201.
- [14] HONG K W, KOH C L, SAM C K, et al. Quorum quenching revisited—From signal decays to signalling confusion[J]. Sensors, 2012, 12(4): 4661-4696.
- [15] BOBAN T, NADAR S, TAURO S. Breaking down bacterial communication: A review of quorum quenching agents[J]. Future Journal of Pharmaceutical Sciences, 2023, 9(1): 77.
- [16] FU Boming, XING Yifei, GONG Changbao, et al. Sensitive detection of quorum signaling molecules (N-acyl homoserine lactones) in activated sludge based on surface molecularly imprinted polymers on CQDs@MIL-101[J].

Environmental Science: Water Research & Technology, 2022, 8(6): 1211-1222.

- [17] GOHIL N, RAMÍREZ GARCÍA R, PANCHASARA H, et al. Book review: Quorum sensing vs. quorum quenching: A battle with no end in sight[J]. Frontiers in Cellular and Infection Microbiology, 2018, 8: 106.
- [18] LADE H, PAUL D, KWEON J H. Quorum quenching mediated approaches for control of membrane biofouling[J]. International Journal of Biological Sciences, 2014, 10(5): 550-565.
- [19] YAZDANI M, BEIHAGHI M, ATAEE N, et al. Antiquorum sensing effects of SidA protein on *Escherichia coli* receptors: *In silico* analysis[J/OL]. Journal of Biomolecular Structure and Dynamics: 1-12[2024-03-15]. https://doi.org/ 10.1080/07391102.2024.2322632.
- [20] XU Boyan, ALBERT NG T C, HUANG Shujuan, et al. Feasibility of isolated novel facultative quorum quenching consortiums for fouling control in an AnMBR[J]. Water Research, 2020, 169: 115251.
- [21] SIKDAR R, ELIAS M. Quorum quenching enzymes and their effects on virulence, biofilm, and microbiomes: A review of recent advances[J]. Expert Review of Anti-Infective Therapy, 2020, 18(12): 1221-1233.
- [22] MURUGAYAH S A, GERTH M L. Engineering quorum quenching enzymes: Progress and perspectives[J]. Biochemical Society Transactions, 2019, 47(3): 793-800.
- [23] LI Suping, GUAN Huaimin, XU Guobao, et al. Progress in molecular imprinting electrochemiluminescence analysis[J]. Chinese Journal of Analytical Chemistry, 2015, 43(2): 294-299.
- [24] 何永红,高志贤,晁福寰.分子印迹-仿生传感器的研究进展[J].分析化学,2004,32(10):1407-1412.
 HE Yonghong, GAO Zhixian, CHAO Fuhuan. The progress of the study on molecular imprinting-based biomimetic sensors[J]. Chinese Journal of Analytical Chemistry, 2004, 32(10): 1407-1412.
- [25] HUO Hongyan, SU Haijia, TAN Tianwei. Adsorption of Ag⁺ by a surface molecular-imprinted biosorbent[J]. Chemical Engineering Journal, 2009, 150(1): 139-144.
- [26] FANG Lei, MIAO Yunxia, WEI Dong, et al. Efficient removal of norfloxacin in water using magnetic molecularly imprinted polymer[J]. Chemosphere, 2021, 262: 128032.
- [27] SURAPONG N, PONGPINYO P, SANTALAD CHAIYA-KIT Y, et al. A biobased magnetic dual-dummy-template molecularly imprinted polymer using a deep eutectic solvent as a coporogen for highly selective enrichment of organophosphates[J]. Food Chemistry, 2023, 418: 136045.
- [28] YANG Xingxing, SUN Jiadi, CUI Fangchao, et al. An eco-friendly sensor based on CQD@MIPs for detection of Nacylated homoserine lactones and its 3D printing applications[J]. Talanta, 2020, 219: 121343.

- [29] CUI Zhimeng, LI Zhuanying, JIN Yuting, et al. Novel magnetic fluorescence probe based on carbon quantum dotsdoped molecularly imprinted polymer for AHLs signaling molecules sensing in fish juice and milk[J]. Food Chemistry, 2020, 328: 127063.
- [30] DE DIEU HABIMANA J, JI Jian, PI Fuwei, et al. A class-specific artificial receptor-based on molecularly imprinted polymer-coated quantum dot centers for the detection of signaling molecules, N-acyl-homoserine lactones present in gram-negative bacteria[J]. Analytica Chimica Acta, 2018, 1031: 134-144.
- [31] JIANG Hui, JIANG Donglei, SHAO Jingdong, et al. Magnetic molecularly imprinted polymer nanoparticles based electrochemical sensor for the measurement of Gram-negative bacterial quorum signaling molecules (N-acyl-homoserine-lactones) [J]. Biosensors and Bioelectronics, 2016, 75: 411-419.
- [32] FAUZIA S, ANDREAS A, MUZDALIFAH D, et al. Core-shell magnetic-modified molecular imprinted polymer (Fe₃O₄@SiO₂@MIP) for dihydroartemisinin recognition and separation[J]. Polymers for Advanced Technologies, 2023, 34(8): 2451-2462.
- [33] SO J, PANG C, DONG Hongxing, et al. Adsorption of 1naphthyl methyl carbamate in water by utilizing a surface molecularly imprinted polymer[J]. Chemical Physics Letters, 2018, 699: 199-207.
- [34] WANG Biao, KUANG Yi, LI Minghui, et al. Magnetic surface molecularly imprinted polymers for efficient selective recognition and targeted separation of daidzein[J]. Advanced Composites and Hybrid Materials, 2023, 6(6): 196.
- [35] XIE Dongliang, KUANG Yi, YUAN Bingnan, et al. Convenient and highly efficient adsorption of diosmetin from lemon peel by magnetic surface molecularly imprinted polymers[J]. Journal of Materials Science & Technology, 2025, 211: 159-170.
- [36] 热阳古·阿布拉,热萨莱提·伊敏,吴泽.磁性分子印迹聚
 合物对石榴皮中白藜芦醇的选择性富集 [J]. 食品科学,
 2024,45(18):33-39.
 ABULA Reyanggu, YIMIN Resalaiti, WU Ze. Magnetic

molecularly imprinted polymer for selective enrichment of resveratrol in pomegranate rind[J]. Food Science, 2024, 45(18): 33-39.

- [37] LIU Zhengjian, CHENG Qiang, WANG Yaozu, et al. The interaction of nanoparticulate Fe₃O₄ during the diffusionlimited aggregation process: A molecular dynamics simulation[J]. Powder Technology, 2021, 384: 141-147.
- [38] WU Ningli, LUO Zhimin, GE Yanhui, et al. A novel surface molecularly imprinted polymer as the solid-phase extraction adsorbent for the selective determination of ampicillin sodium in milk and blood samples[J]. Journal of Pharmaceutical Analysis, 2016, 6(3): 157-164.
- [39] KUANG Yi, CHEN Wei, CHEN Zhouhan, et al. Highlyefficient selective recognition and rapid enrichment of chrysin by magnetic surface molecularly imprinted polymer[J]. Food Chemistry, 2023, 405: 134993.
- [40] 彭宁,阎凤超,陈磊,等.呋喃分子印迹聚合物的制备及 其吸附特性 [J].分析化学,2010,38(4):559-563.
 PENG Ning, YAN Fengchao, CHEN Lei, et al. Preparation and binding characteristics of molecularly imprinted polymers for furan[J]. Chinese Journal of Analytical Chemistry, 2010, 38(4):559-563.
- [41] 王悦,王超峰,赵文昌,等.雏菊花状雌二醇轻质磁性表面分子印迹聚合物的制备及其吸附性能研究 [J]. 分析化学, 2021, 49(11): 1908-1918.
 WANG Yue, WANG Chaofeng, ZHAO Wenchang, et al. Preparation and recognition characters of daisy flower-like lightweight magnetic surface molecularly imprinted polymers for estradiol[J]. Chinese Journal of Analytical Chemistry, 2021, 49(11): 1908-1918.
- [42] BASHIR K, GUO Pengqi, CHEN Guoning, et al. Synthesis, characterization, and application of griseofulvin surface molecularly imprinted polymers as the selective solid phase extraction sorbent in rat plasma samples[J]. Arabian Journal of Chemistry, 2020, 13(2): 4082-4091.
- [43] KUANG Yi, XIA Yunlong, WANG Xing, et al. Magnetic surface molecularly imprinted polymer for selective adsorption of 4-hydroxycoumarin[J]. Frontiers in Chemistry, 2022, 10: 862777.