

唐崇俭,中南大学冶金与环境学院教授,博士生导师,冶金与环境学院教授委员会副主任,教 育部青年长江学者、教育部课程思政教学名师、湖南省杰出青年基金获得者、全国高校黄大年式 教师团队骨干成员,兼任国际水协中国青年委员会委员、中国环境科学学会重金属污染防治专业 委员会委员、中国环境科学学会生态环境修复专业委员会委员、中国有色金属学会有色冶金资源 综合利用专业委员会委员兼副秘书长、中国化工学会工业水处理专业委员会委员, 《Sustainability》《Frontiers of Environmental Science and Engineering》《中国环境科学》《能源环境保 护》等期刊编委/青年编委。主要从事污染控制与资源化技术及原理、氮循环及其环境应用等相 关的研究工作。主持国家自然科学基金联合重点项目、国家重点研发计划课题,以及湖南省科技 重大专项、湖南省国际科技合作重点项目、中南大学创新驱动计划等项目 20 余项,在《Water Research》等期刊发表论文 100 余篇,授权专利 30 余项,获省部级科技奖励 3 项。

李智卓,姚福兵,吴星,等.硝酸盐废水电化学选择性还原产氨的研究进展[J].能源环境保护,2023,37 (4): 56-67.

LI Zhizhuo, YAO Fubing, WU Xing, et al. Progress in selective electrochemical reduction of nitrate into ammonia [J]. Energy Environmental Protection, 2023, 37(4): 56-67.

硝酸盐废水电化学选择性还原产氨的研究进展

李智卓1,姚福兵1,吴星1,高天宇1,宋振辉1,柴喜林2,唐崇俭1,*

(1. 中南大学 冶金与环境学院, 湖南 长沙 410017; 2. 江西盖亚环保科技有限公司, 江西 上饶 334100) 摘要:硝酸盐(NO3) 电化学选择性还原生成氨(NH3) 是实现硝酸盐废水资源化处理的关键。本 文综述了 NO、电化学还原生成 NH、领域的最新进展,讨论了 NO、电化学还原的机理,选择性生成 NH₃的关键步骤是将 NO₃转化为 NO₅和形成 N—H 键:比较了不同电极材料的性能,提出了强化 电极性能的调控策略,分析认为材料的晶体结构、形貌及电荷密度是影响电极性能的关键参数; 阐述了电化学反应器对 NO3转化率和 NH3选择性生成的影响规律,明确了电解池的核心是避免 阳极的干扰和实现 NH3的原位分离回收。在此基础上,提出了实现 NO3电化学选择性还原生成 NH3的重点是开发低成本、稳定高效的电极材料和研发电化学耦合原位分离 NH3的一体化反应 器,以及开展长期大规模的实际 NO、废水电化学选择性还原产 NH、的研究。

关键词: 电化学还原; 硝酸盐废水; 硝酸盐还原; 选择性还原; 氨回收

中图分类号:X703

文献标识码:A

文章编号:1006-8759(2023)04-0056-12

Progress in selective electrochemical reduction of nitrate into ammonia

LI Zhizhuo¹, YAO Fubing¹, WU Xing¹, GAO Tianyu¹, SONG Zhenhui¹, CHAI Xilin², TANG Chongjian^{1, *}

- (1. School of Metallurgy and Environment, Central South University, Changsha 410017, China;
 - 2. Jiangxi Gaiya Environmental Protection Technology Company, Shangrao 334100, China)

Abstract: Selective electrochemical reduction of nitrate (NO₃) into ammonia (NH₃) is critical for environmental remediation and resource recovery. This review comprehensively summarizes the recent advances in electrochemical conversion of NO₃ into NH₃. Mechanisms of NO₃ reduction are discussed. The conversion of NO₃ into NO₂ and formation of N—H is the key for achieving high selectivity of NH₃.

收稿日期:2023-05-15;责任编辑:金丽丽 **DOI**:10.20078/j.eep.20230601

基金项目:国家自然科学基金资助项目(U21A20294);湖南省自然科学基金资助项目(2022JJ40622);江西省技术创新引导类计划项目-科技 合作专项(20212BDH81030)

作者简介:李智卓(1998—),男,陕西西安人,硕士,主要研究方向为水污染控制与资源化技术及原理。E-mail: 1991210622@qq.com

通讯作者: 唐崇俭(1984—), 男, 湖南永州人, 教授, 主要研究方向为污染控制与资源化技术及原理、氮循环及其环境应用。

The technologies and strategies for enhancing the performance of electrode are summarized and compared. The crystal structure, morphology and charge density of materials are the key factors affecting the properties of electrode materials. The influence of electrochemical reactor on NO_3^- conversion and NH_3 formation is described. The core of electrolytic cell is to avoid anode interference and in-situ realize NH_3 separation and recovery. With these facts, it is proposed that the strategies for NO_3^- electrochemical selective reduction synthesis of NH_3 are the development of low-cost, stable, and efficient electrode materials and electrochemical synthesis and in-situ separation of NH_3 reactor. Besides, the long-term large-scale research on the electrochemical synthesis of NH_3 from actual NO_3^- wastewater is critical for promoting the industrialization of this technology.

Keywords: Electrochemical reduction; Nitrate wastewater; Nitrate reduction; Selective reduction; Ammonia recovery

0 引 言

氨(NH₃)作为世界上产量第二大的化工品,是制造化肥、医药及染料等产品不可或缺的原料^[1],更凭借其零碳、大能量密度(4.3 kW·h·kg⁻¹)、高含氢量及便于储存等特性已成为一种潜在的绿色能源载体和燃料^[2]。目前,NH₃合成主要依赖哈珀–波施(Haber–Bosch)工艺,但该方法反应条件苛刻(高温高压 300~500 $^{\circ}$ C、200~300 atm)、能耗高(全球能耗的 1%~2%),且排放大量 CO、CH₄等温室气体^[3-4]。

近年来,研究者以水为氢源在室温下实现了电 催化还原氮气 (N_2) 合成 $NH_3^{[5-6]}$ 。然而, $N \equiv N \equiv$ 键的断裂的能量高达 941 kJ/mol,导致反应速率 慢和 NH,产量小,极大地限制了该技术的实际应 用[7]。与 N,相比,硝酸盐(NO;)在水中的溶解度 高,N = 0 断裂的能量仅为 204 kJ/mol,同时 NH, 是电化学还原 NO; 的主要产物之一[8-10]。此外, NO₃作为水质优劣评价的主要参考指标之一,所 引起的环境问题已成为全球关注的热点[11-13]。 据报道,吉林某城区浅层地下水中 NO;的最高浓 度达 150 mg N/L(每升水中的氮元素质量)[14]。 钢铁冶炼、电镀、光伏等行业常利用硝酸作为表面 清洗剂或热处理剂,产生大量高浓度 NO、废 水[15-16]。某冷轧不锈钢带钢厂的退火废水中 NO₃浓度高达 2 500 mg N/L^[17]。因此,以 NO₃污染 的水体为研究对象,通过电化学反硝化将 NO3转化成 NH3,不仅可以实现 NO3废水的处理,还能实现氮的 资源回收,正受到越来越多研究者的关注[18-19]。

电化学反硝化路径复杂,涉及多个电子和多种含氮产物 $^{[20-22]}$ 。其中 NH_4^+ 、亚硝酸盐 (NO_2^-) 和 N_2 是该反应的主要产物 $^{[23-24]}$ 。电极材料在电化

学反硝化系统中处于"心脏"地位,是决定 NO3 还原路径和效率的关键^[25-26]。电解池也是影响电化学还原 NO3为 NH3的一个关键因素^[27]。因此,本文分析了电化学选择性还原 NO3生成 NH3的机理,讨论了电极材料和反应器对 NO3 还原效率和选择性生成 NH3的影响。同时,根据作者的研究经验,总结了该技术面临的关键问题和挑战,并展望了电化学还原 NO3生成 NH3的发展方向。

1 电化学还原 NO; 的机理

电化学还原 NO_3^- 是一个多电子传递的复杂过程,涉及多种中间产物和终产物 (NO_2^-, N_2O_3, N_2O_3) 以 NH_4^+ 等) $[^{28-29]}$ 。其中 NH_4^+ 和 N_2 的热稳定性最强,是常见的最终产物 $[^{30-31]}$ 。Wang 等以钯锡双金属修饰活性炭纤维电极 (Pd-Sn/ACF) 为阴极,恒电流模式下处理含 NO_3^- 废水。结果表明, N_2 是 NO_3^- 还原的主要产物 $(95\%)^{[32]}$ 。Yang 等将铜/铁纳米粒子锚定于二氧化钛基底形成双金属电催化剂 $(Cu/Fe-TiO_2)$,在 50 mg N/L NO_3^- 溶液中,电极电势为-1.4 V vs. SCE 时, NO_3^- 的去除率为 93.1%,但主要产物为 NH_4^+ $(90.9\%)^{[33]}$ 。因此,厘清电化学还原 NO_3^- 生成 NH_3 的机理,是提升 NO_3^- 去除率和选择性生成 NH_3 的关键。

电化学反硝化是通过外加电源提供电子,在催化剂界面将 NO_3^- 还原 $[^{34-35]}$ 。 NO_3^- (aq) 首先被吸附于电极表面形成 NO_3^- (ad) (公式 1) $[^{36]}$ 。因此, NO_3^- 浓度以及传质速率都会对电化学还原 NO_3^- 反应的速率造成影响 $[^{37-38]}$ 。Yao 等研究表明,铜基电极电化学还原 NO_3^- 是一个扩散传质控制的过程,同时浓度越高去除的 NO_3^- 越多 $[^{37]}$ 。在电势的驱动下, NO_3^- (ad) 与电子和质子反应生成 NO_2^- (公

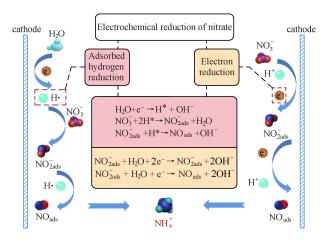


图 1 NO₃电化学还原路径

Fig. 1 The pathway of electrochemical NO₃ reduction

式 2) $[^{39]}$ 。该步骤中由于 NO_3 具有高能量的 $LUMO_{\pi}*轨道,造成电子难以进入,导致其转化为 <math>NO_2$ 的效率低,这也是整个电化学反硝化过程的控速步骤 $[^{40]}$ 。 NO_2 也可与电子和质子反应转化为 NO(公式 3)。NO 的转化过程存在两种路径,一种是 NO 直接与电子和质子作用,以 NH_4 作为最终产物 (公式 4)。另一种是溶液中的 NO 与电极表面的 NO 结合形成 $N_2O(公式 5)$,最转化为 $N_2(公式 6~7)$ 。

$$\begin{split} NO_3^-(aq) & \Longrightarrow NO_3^-(ad) \qquad (1) \\ NO_3^-(ad) + 2H^+ + 2e^- & \longrightarrow NO_2^-(ad) + H_2O \quad (2) \\ NO_2^-(ad) + 2H^+ + 2e^- & \longrightarrow NO(ad) + H_2O \quad (3) \\ NO(ad) + 6H^+ + 5e^- & \longrightarrow NH_4^+(ad) + H_2O \quad (4) \\ NO(ad) & \longrightarrow NO(aq) \quad (5) \\ NO(ad) + NO(aq) + 2H^+ + 2e^- & \longrightarrow N_2O(ad) + H_2O \end{split}$$

 $NO_2(ad) + 2H^+ + 2e^- \longrightarrow N_2 + H_2O$

另外,电化学还原 NO_3 也可通过加氢还原实现,即活性氢 (H^*) 介导的转化过程 $^{[41]}$ 。在 H^* 介导的电催化反应中,首先是吸附于电极界面的水分子 (H_2O) 被还原为 $H^*(公式 8)$,为后续 NO_3 转化提供重要驱动力,也是 NO_3 还原的关键步

骤^[42]。H*将 NO₃还原产生的 NO₂转化为多种中间产物(NO_{ads}、N_{ads}、NH_{ads}、NH_{2ads}等),最终生成 N₂或 NH₄(公式 9~14)^[43]。值得注意的是,虽然两个 N_{ads}可以结合生成 N₂,但 N_{ads}的迁移势垒(0.75 eV)远高于 H_{ads}(0.10 eV),并且 N—H 键的形成在动力学上比 N—N 键更容易^[44]。因此,在电化学反硝化过程中,虽然 NO₃转化成 N₂所需的电子转移数比还原成 NH₃更少,但 NO₃选择性还原成 NH₃的途径更易发生。

$$H_{2}O+e^{-} \longrightarrow H(ad) + OH^{-} \qquad (8)$$

$$NO_{3}^{-}(ad) + 2H(ad) \longrightarrow NO_{2}^{-}(ad) + H_{2}O \qquad (9)$$

$$NO_{2}^{-}(ad) + H(ad) \longrightarrow NO(ad) + OH^{-} \qquad (10)$$

$$NO(ad) + 2H(ad) \longrightarrow N(ad) + H_{2}O \qquad (11)$$

$$NO(ad) + H(ad) \longrightarrow NH(ad) \qquad (12)$$

$$NH(ad) + H(ad) \longrightarrow NH_{2}(ad) \qquad (13)$$

$$NH_{2}(ad) + H(ad) \longrightarrow NH_{3}(ad) \qquad (14)$$

2 电极材料

电化学还原 NO₃的效率和生成 NH₃的选择性与系统中电极材料的物理化学和电化学性质息息相关。研究表明,电极与氮、氧原子的结合能越大,其电化学还原 NO₃的活性越高^[34]。常用的电极材料根据原料的成本可以分为贵金属基(Pd、Pt、Ru等)和非贵金属基(Cu、Fe等)两类。

2.1 贵金属基电极

在贵金属电极电化学还原 NO_3 的研究中,铂族金属(Ru、Ir、Rh、Pt、Pd等)因具有极强的耐腐蚀性和优异的催化性能而受到广泛关注 [45-46]。金电极在电流密度为 2.85 mA/cm^2 的条件下电解 0.5 mol/L 的 NO_3 溶液 6 h,氨的产率为 $58\%^{[47]}$ 。 Li 等发现钌纳米 簇电极电化学还原 NO_3 生成 NH_4 的产率 (5.56 $mol/(g_{cat}\cdot h))$ 高于传统的 Haber-Bosch 工艺 [48]。电化学分析表明,铂类金属电化学还原 NO_3 的活性按 Rh > Ru > Ir > Pd-Pt 的顺序递减 [49-50]。

表 1 NO3 电化学还原生成 NH3 的电极及性能

(7)

Table 1 The performance of electrode material for electrochemical NO₃ reduction into NH₃

电极材料	$\mathrm{NH_{3}}$ 产率/ $(\mathrm{mmol}\cdot\mathrm{h}^{-1}\cdot\mathrm{cm}^{-2})$	NH ₃ 选择性/%	法拉第效率/%	文献
Au	/	58.00	/	[47]
Ru 纳米镞	1.030 0	100.00	/	[48]
CuPd 合金	212.000 0	/	95.50	[51]
CuPd 气凝胶	/	77.49	90.02	[52]
Pd 纳米颗粒	0.548 5	/	79.90	[53]
单原子 Fe	0.460 0	/	75.00	[54]

1.1.	-	
43	=	F.

电极材料	$\mathrm{NH_{3}}$ 产率/ $(\mathrm{mmol}\cdot\mathrm{h}^{-1}\cdot\mathrm{cm}^{-2})$	NH ₃ 选择性/%	法拉第效率/%	文献
不锈钢	/	75.00	/	[55]
碳包裹铁镍	/	81.00	/	[56]
Cu/Cu_2O	0.240	91.00	93.80	[57]
$\mathrm{Cu/Fe\text{-}TiO}_2$	0.010	90.90	91.20	[33]
CuFe	/	86.80	94.50	[9]
$\mathrm{Cu}_{50}\mathrm{Ni}_{50}$	/	100.00	>99.00	[58]
${ m TiO_2}$ @ HNTs	/	87.10	85.00	[59]
$\hbox{Co-Fe@ Fe}_2\hbox{O}_3$	0.128	99.00	85.20	[60]
Fe ₂ TiO ₅ 纳米棒	0.136	/	96.06	[28]

通常情况下,贵金属电极电化学析氢过电位低^[61]。与氢相比,NO3在贵金属表面吸附能较低,并且其还原电势高于氢气形成电位,导致电极的电化学反硝化活性较低^[62]。因此,如何降低析氢副反应是提升贵金属电极电化学还原 NO3生成 NH3性能的关键。研究表明,将贵金属与促进金属(Cu、Sn、In)等结合形成合金可有效增加 NO3的吸附能,从而提升其电化学反硝化的活性^[51,63-65]。Xu等以 Cu 作为促进金属,合成了CuPd 双金属气凝胶电极,并用于电化学还原 NO3生成 NH3^[52]。当施加电位为-0.46 V vs. RHE 时,NO3转化率、NH3选择性和法拉第效率分别达到95.27%、77.49%、90.02%,远高于 Pd 气凝胶。

晶面调控是提升贵金属基电极电化学反硝化活性的另一种手段[53]。理论计算表明,在 Pd (111)、Pd (110)和 Pd (100)三个晶面中,Pd (111) 具有更高的 NO $_3$ 吸附能和更低的 * NH $_3$ 向 NH $_3$ (限速步骤)转化的自由能[66]。在 Pd (111) 晶面更容易实现 * NO $_3$ 向 * NO $_2$ 的转化。此外,调控晶面还可以有效降低析氢副反应[67]。 Han 等合成了不同 Pd 优势晶面的电极材料,并用于电化学还原 NO $_3$ 生成 NH $_3$ 。 Pd (111) 为优势晶面的电极生成 NH $_3$ 的产率 $(0.5485 \text{ mmol/}(h \cdot \text{cm}^2))$ 是 Pd (100)和 Pd (110) 为优势晶面的 1.4和 1.9 倍[53]。

虽然贵金属基电极电化学还原 NO_3 为 NH_3 的 产率高,但是贵金属成本高昂,其研究尚停留在实验室阶段。此外,高浓度 NO_3 会致使贵金属催化剂失活 [68]。研究表明, NO_3 还原的中间产物或副产物(NO_3 O等)吸附在 Ru_3 Rh 或 Ir等电极表面会占据活性位点,导致电极电化学反硝化活性降低 [69]。因此,在电化学反硝化的研究中非贵金

属基电极材料更具应用价值。

2.2 非贵金属基电极

非贵金属基电极材料包括过渡金属单质和氧化物两类,它们可通过电子传递将 NO₃转化成为 NH₄^{+[54,70-73]}。一方面,过渡金属的储量丰富、价格低廉,可有效地降低电化学技术成本;另一方面,过渡金属具有未占满的 d 轨道,易于接收/提供电子,有利于电化学反应的进行^[74-75]。目前,常用的非贵金属主要包括 Fe、Cu、Ni 及 Ti 等。

Fe在自然固氮系统中起着至关重要的作 用[76]。商用的 Haber-Bosch 工艺使用 Fe 作为催 化剂[26]。密度泛函理论(DFT)计算证明,电极材 料对于氧和氮的吸附强度是决定电催化剂还原 NO、活性和产物选择性的关键指标,而 Fe 已被证 实与氮氧化物具有适当的结合能^[8,77]。Teng 等 研究发现 Fe 的 3d 轨道不稳定易与 NO₃(N—O) 中氧的核外电子配对形成 Fe(II)O或 Fe(III)O, 从而将 NO₃还原成为 NH₄^{+[21]}。Wu 等发现铁单原 子电化学还原 NO、为 NH+的产率和法拉第效率分 别为 20 000 μg/(g_{cat}·h)和 75%^[54]。Lacasa 等以 不锈钢作为阴极,金刚石作为阳极,22.5 mg N/ dm³ NO₃ 和 3 000 mg/dm³ Na₂ SO₄ 为电解液,构建 电化学反硝化系统[55]。该系统 NO; 去除率和 NH4选择性分别约为 100%和 75%。然而, NO3转 化为 NH₄过程会产生大量的 OH⁻,导致 Fe 电极表 面物相发生转变或溶出,从而降低其催化活性。 铁单质电极电化学还原 NOT的电解液中铁离子浓 度可高达 150 mg/L[35]。为进一步提升单质材料 的活性和稳定性,常添加第二种金属,形成合金催 化剂。Chen 等利用浸渍涂层和碳热还原策略,在 泡沫镍上原位生长 FeNi 合金纳米颗粒得到自支

撑电催化剂 (FeNi/g - mesoC/NF), 并应用于NO₃RR产 NH₃。在 50 mg N/L 的 NO₃的电解液中,制 NH₃能耗为 0.7 kW·h·mol^{-1[78]}。

铜基材料因其优良的催化性能和低廉的价格 在电化学还原 NO; 领域显示出巨大的应用前 景[79-80]。然而,铜基电极还原 NO;的主要产物为 NO5和 NH4。Shih 等发现 Cu 电极电化学还原 NO₃的主要产物是 NH₄(47.1%) 和 NO₅(42.9%)^[80]。 为进一步提升 Cu 基电极的电化学反硝化活性,研 究者开发了 Cu 基合金催化剂^[58]。Yang 等将 Cu/Fe纳米粒子锚定于 TiO,基底上形成双金属电 催化剂(Cu/Fe-TiO,)[33]。在含 50 mg N/L NO, 的电解液中,电极电势为-1.4 V vs. SCE 时,93.1% 的 NO3-N 被还原,且 NH4-N 选择性和法拉第效 率(FE)分别高达90.9%和91.2%。理论计算和原 位红外光谱表明,优先吸附在 Fe 相上的 * NO,向 Cu/Fe 异相界面转换,还原成*NH3,而与*NH3 有关的进一步转换发生在 Cu 相上,有效地促进了 NO₃转化为 NH₃。Wang 等发现 CuNi 合金电极过 电势与 NO3 的吸附能之间存在火山型关系,这表 明 NO;结合太强或太弱都不利于 NO;向 NH,的转 化[58]。Ni 含量为 50%的 CuNi 合金表现出最佳的 催化活性和选择性,与铜单质电极相比法拉第效 率提高了20%以上。催化性能的提高归因于通过 合理引入 Ni 原子,优化了铜的 d带中心和 NO;的 吸附能。

非贵金属金属氧化物(如二氧化钛、氧化铁、四氧化三钴等)具有价格便宜和稳定性高的优势,但氧化物作为典型的半导体电子存在传递速率低、催化活性差、电化学反硝化效率及电能利用率较低等缺陷^[81-82]。通常情况下,金属氧化物的理化性质和催化性能受其形状、晶体结构和暴露面等参数影响较大^[83-84]。因此,调整金属氧化物结构或电荷密度可有效提高其导电性和催化活性。研究表明,二氧化钛纳米管由于电极表面积显著增加,可以提高其电化学还原 NO₃ 的转化率和生成 NH₃的选择性^[85]。单晶 TiO₂内部晶体结构连续而有序具有较高的导电性。俞汉青等研究发现单晶 TiO₂在电化学降解罗丹明 B、双酚 A 以及处理垃圾渗滤液方面展现出优越的电催化活性和稳定性^[86]。

此外,缺陷工程和元素掺杂也是改善金属氧化物结构、电子密度、光学和催化活性等特性的有

效方式^[87-89]。Jia 等通过高温 H_2 还原制备了富含氧缺陷的 TiO_2 纳米管并应用于电催化还原 NO_3 。结果表明,该系统具有较高的法拉第效率 (85.0%)和 NH_4^+ (87.1%)选择性^[59]。Guo 等发现在 TiO_2 中引入 Pd 原子有利于提升其从 NO_3^- 捕获电子的能力,从而提升其电化学还原 NO_3^- 生成 NH_3 的性能^[90]。Zhang 等制备了由 CoFo 双金属有机骨架结构衍生的 Co-Fe@ Fe_2O_3 催化剂,当电势为 -0.75 V vs. Ag/AgCl 时,在 50 mg N/L NO_3^- 和 0.1 mol/L Na_2SO_4 电解液中 NO_3^- —N 的转化率、产 NH_3 速率、FE 和选择性分别为 96.7%、1 008 mg N/g_{cat} 、85.2%和 $99\%^{[60]}$ 。理论计算表明,Co 的掺杂有效地调节了 Fe 的 d 带中心,改善了其对于中间体和产物的吸附能,从而提升其 NO_3^- RR 产 NH_3 活性。

AB₂O₄型尖晶石氧化物因其多功能性、灵活的离子排列、多价结构和高电子传导性等优点被广泛应用于电化学反硝化生成 NH₃^[29,91]。Du 等制备了含氧缺陷(Vo)的 Fe₂TiO₅纳米棒电极(FTO),在含 0.1 mol/L NaNO₃的磷酸盐缓冲电解液中,-1.0 V vs. RHE 电势下,该系统 NH₃的产率和 FE分为 1.36 mmol/(mg_{cat}·h)和 87.6%,且在循环 12次后仍维持高的催化活性^[28]。理论计算表明,Vo不仅可有效地减小电子云间的带隙,还降低了FTO对于 NO₃的吸附自由能(0.09 eV 降至-0.28 eV)。此外,FTO 不饱和的 d 轨道可提升金属原子对于 NO₃的吸附,并强化活性位点和 NO₃还原中间产物之间的电子相互作用。Fe 和 0 之间会形成部分反键态,降低费米能级,提升电子转移效率,促进 NO₃的转化和 NH₃的生成。

3 电解池

电化学反应器是决定电化学还原 NO₃产 NH₃ 效率和能耗的另一个关键因素。目前,常用于电化学反硝化的反应器包括单室和双室电解池。

3.1 单室电解池

单室电解池是将阳极和阴极置于同一容器内, NO_3 在阴极被还原成为 NH_4^+ 。以氮掺杂石墨碳包裹铜铁双金属电极为阴极,Ru-Ir/Ti 为阳极, 开展电化学反硝化的研究, NH_4^+ 生成的选择性最高可达 $91.1\%^{[56]}$ 。然而,还原和氧化反应分别在阴极和阳极表面同时发生[92]。阳极产生的氧气 (O_2) 会在一定程度上与 NO_3^- 竞争电子,从而抑制电化学反硝化[93]。

电解池	电极材料	$Cl^-/(mg \cdot L^{-1})$	NH ₃ 选择性/%	文献	
CoP	C D	0	85.00	[27]	
	CoP	1 000	12.00	[27]	
	Cu ₃ P/CF	0	81.10	[27]	
× =	-	2 000	1.40	[37]	
单室	C - O /T:	0	65.00	[02]	
	Co ₃ O ₄ /Ti	1 500	4.00	[83]	
碳包裹铁	型石亩份	0	75.00	[24]	
	1 000	0	[24]		
Co-NAs 活性炭纤维 双室 CoP	C. NA	0	96.0	[70]	
	Co-NAs	1 000	80.0	[70]	
	活性炭纤维	0	38.0	[94]	
	CoP	1 000	80.0	[27]	
		635	84.7		

表 2 NO3电化学还原生成 NH3的电解池

C11O@ C11 此外,一些在阴极表面还原生成的产物可能 会在阳极表面被重新氧化,会降低电化学反应的 法拉第效率。Gao 等利用单室电解池开展电化学 还原 NO、生成 NH、的研究。当溶液中氯离子 (Cl-)浓度从0增加到1000 mg/L 时,生成 NH,的 选择性从85%降低到12%,同时相应的NH3生成 电流密度也从 21.4 mA/cm2下降到 0.85 mA/ cm^{2[27]}。NO;的废水中通常含有 Cl⁻、硫酸根 (SO₄²)等其他离子。宁波某制药废水中总氮 (TN)和Cl⁻的浓度分别为306、4062 mg/L^[37]。广 东某焦化废水处理厂的生化处理后 NO;和 Cl-浓 度分别为 321、761 mg/L^[24]。研究表明, Cl⁻在阳 极表面会被转化成为氯气(Cl₂),并进一步与水结 合生成次氯酸(HClO)[96-97]。电解食盐水制取氯 气是氯碱工业中的基本反应之一[98]。ClO⁻是一 种强氧化剂,其不仅能够将 NO;氧化成为 NO;,还 可以通过折点加氯的方式将 NH⁺氧化成为 N₂,从 而导致 NH4 的产率和选择性较低[99]。当电解液 中不存在 Cl⁻时,泡沫铜原位生长磷化亚铜电极 (Cu₃P/CF) 电化学还原 NO₃产 NH₄的选择性为

3.2 双室电解池

NO;还原的主要产物为 N。[37]。

针对上述问题,研究者开发了双室电解池并 用于电化学还原 NO3生成 NH3。在双室电解池 中,阳极和阴极分别位于阳极室与阴极室。它们

81.1%。然而, 当溶液中存在 2 000 mg/L Cl⁻时,

由离子交换膜或盐桥隔开,允许质子或带电子的离子通过,防止不同电解液互相混合。Deng等以钴纳米阵列(Co-NAs)作为阴极,Pt为阳极,利用质子交换膜将阳极和阴极隔开构建 H型双室反应器开展电催化还原 NO_3^- 生成 NH_4^+ 的研究, NH_4^+ 的产率高达 $10.4 \, \text{mmol/}(\text{h} \cdot \text{cm}^2)^{[70]}$ 。

88.2

[95]

一方面,双室反应器有效地避免了阳极产生的 O_2 与 NO_3 竞争电子,从而提升 NO_3 的去除率和法拉第效率 [57]。 Ding 等利用石墨毡电极电化学还原 NO_3 发现,单室电解池对 NO_3 的去除率仅有8%,而相同条件下双室电解池对其去除率高达75% [94]。另一方面,双室反应器有效地防止了阳极表面生成的活性物质 $(ClO^- \cdot \cdot OH$ 等)氧化 NO_3 还原的中间产物和 NH_3 。 Gao 等利用 Nafion质子交换膜将阴极和阳极室分开,以防止阳极产生的 ClO^- 将生成的 NH_4^+ 氧化。结果表明,即使在1000 mg/L Cl^- 共存的条件下,电化学还原 NO_3 产 NH_3 的选择性仍然高达 $80\%^{[27]}$ 。

然而,无论单室还是双室电解池电化学还原NO₃产生的NH₃均以NH₄形式存在于废水中,需要进一步的分离和提纯^[100-101]。NH₄在水中的溶解度高、分离提纯难,氨氮废水的处理也是当前环境治理的难题^[102]。此外,NH₄本仅是水体中的营养素,可引起水体富营养化现象,更是水体中的主要耗氧污染物,对鱼类及某些水生生物存在一定的毒害作用^[103]。

3.3 新型电解池

NH₄*的解离常数 $K_a = 5.70 \times 10^{-10}$, $pK_a = 9.24$, 故在碱性溶液中 NH₄*会转化成为 NH₃, 尤其当 pH 大于 11 时,溶液中的 NH₄*/NH₃几乎全部以 NH₃的形式存在^[104-105]。基于此,研究者开发了空气吹脱法资源化处理 NH₃废水的技术^[106-107]。然而,该技术存在化学试剂用量大、电能消耗大、设备易结垢、NH₃回收效率低等缺点。

在电化学反硝化系统中,一方面还原 NO;会 消耗溶液中的 H⁺,导致电解液的 pH 不断升高。 我们之前的研究表明,在电化学反硝化过程中溶 液的 pH 会不断升高, 当初始 pH 为 7 时, 电化学 还原 NO5反应 4 h 后电解液的 pH 超过 11[108]。另 一方面阴极电解水会不断产生 OH-,导致阴极表 面的 pH 远高于溶液的 pH^[109]。曲久辉等在电化 学还原溴酸盐(BrO;)的研究中发现,即使溶液中 pH 只有 8 左右, 阴极表面 pH 也可达到 12 甚至更 高[110]。根据 Fick 和法拉第定律可以准确的计算 电极界面的 pH[111]。在 25 mA/cm2的电流密度 下, 当溶液中的 pH 为 7 时, 电极界面的 pH 高达 12.06。在此条件下,电解界面产生的 NH₄/NH₃中 约99.9%是以气态 NH₃的形式存在[105]。因此,在 电化学反硝化系统中阴极表面产生的 NH⁺可以被 原位转化成为 NH3,如何收集 NH3是实现电化学 还原 NO; 回收 NH, 的关键。

防水透气膜(呼吸膜)是一种近年兴起的高分子防水材料。从原理来讲,水颗粒由于表面张力的存在不能够透过膜;而气体分子较小,根据毛细运动的原理,可以顺利渗透到膜的另一侧,从而实现气液分离^[112]。Talekar等发现在生物电化学系统中采用呼吸膜可从阴极室中回收 NH₃(约95%)^[113]。Hou等采用镍基疏水性透气膜为阴极进行电化学回收 NH₃的研究, NH₃的回收率为36.2 g N/(m²·d)^[102]。基于此,将电极与防水透气膜耦合有望实现电化学还原 NO₃生成 NH₃并原位分离回收。

4 NO、电化学还原生成 NH、的关键挑战

通过电化学还原废水中的 NO3生成 NH3的策略为环境治理和可持续合成 NH3开辟了新途径。该过程由可再生能源提供动力而不依赖于化石燃料。另外,电化学反应还具有条件温和、小规模原位生产 NH3潜势大等优势,可有效地避免了 NH3

的存储和运输等方面存在的潜在威胁。大量储存硝酸铵具有严重的风险,可能发生毁灭性的爆炸。电化学技术可以按需生产氮肥,从而减少硝酸铵的储存量,极大地提升了安全性。然而,电化学选择性还原 NO₃生成 NH₃尚属全新概念,难以预测这一过程的全部潜力。Haber-Bosch 工艺是一项成熟的技术,已经被广泛研究与应用。针对 N₂的 NO₃还原一直是过去几十年的研究热点。目前,电化学还原 NO₃生成 NH₃主要集中在高性能电极开发和短期批次研究,还没有关于电极在长期电解中的性能评价的报道。此外,急需建立关于电极开发和性能评估的标准方法,包括电极的表征、稳定性、应用等。

氢气是电解过程中不可避免的副产物,在还原 NO₃过程中产生的氢气基本直接排放。大规模的电化学反应过程存在严重的安全隐患,尤其当 NO₃浓度较低时,这个问题更为突出。因此,开发电解过程中氢气的回收技术是电化学还原 NO₃产 NH₃应用的一个挑战。NH₃在水中溶解度高,分离提纯难。电化学还原 NO₃生成 NH₃的研究主要集中于法拉第效率和 NH₃的生成速率,鲜有关注 NO₃的去除率和 NH₃的分离回收。该技术生成的 NH₃仍然以污染物的形式存在于废水中。此外, 氨氮废水是当前环境治理的一大难题。因此,未来对于该技术的研究还应聚焦于 NO₃去除效率和 NH₃的分离回收。

电化学还原 NO₃生成 NH₃需要处理大量废水,导致电解装置规模大和反应时间长。在电化学反应之前应该将废水中的 NO₃进行浓缩,以减小装置规模和缩短反应时间。此外,废水中通常含有大量共存离子或有机质,而目前的研究均采用模拟废水进行电化学还原 NO₃生成 NH₃小试。因此,急需预测或评估 NO₃废水的产生量和开展大规模的实际 NO₃废水电化学生成 NH₃的研究,为该技术的实际应用提供参考。

5 结论与展望

NO₃电化学选择性还原产 NH₃技术为资源化处理 NO₃废水和缓解 NH₃生产压力开拓了新途径。本文综述了 NO₃电化学选择性还原产 NH₃的最新研究进展,厘清了电化学反硝化的路径和选择性生成 NH₃的关键步骤和机制,总结和比较了不同强化电极材料性能的方法和策略,阐述了电化学反应器对 NO₃转化率和 NH₃选择性生成的影

响规律,为高效电催化剂和反应器的设计提供了参考。尽管目前已经有大量针对 NO3 电化学选择性还原产 NH3的研究,但高效转化 NO3、选择性生成 NH3以及该技术的实际应用仍然存在一些挑战。开发低成本、高效稳定的电催化剂,并建立相应的电极合成、表征和评价体系是当前急需解决的问题。此外,如何实现 NH3/NH4的原位分离回收和副产物氢气的利用是未来研究的重要方向。另外,开展长期大规模的实际 NO3 废水电化学选择性还原产 NH3的研究是推进该技术工业化的关键。

参考文献 (References):

- [1] LIM J, FERNANDEZ C A, LEE S W, et al. Ammonia and nitric acid demands for fertilizer use in 2050 [J]. ACS Energy Letters, 2021, 6(10): 3676-3685.
- [2] ZAMFIRESCU C, DINCER I. Using ammonia as a sustainable fuel [J]. Journal of Power Sources, 2008, 185(1): 459-465.
- [3] KYRIAKOU V, GARAGOUNIS I, VOURROS A, et al. An electrochemical Haber Bosch process [J]. Joule, 2020, 4 (1): 142–158.
- [4] SMITH C, HILL A K, TORRENTE MURCIANO L. Current and future role of Haber – Bosch ammonia in a carbon – free energy landscape [J]. Energy & Environmental Science, 2020, 13(2): 331–344.
- [5] CUI X Y, TANG C, ZHANG Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions [J].
 Advanced Energy Materials, 2018, 8(22): 1800369.
- [6] MCENANEY J M, SINGH A R, SCHWALBE J A, et al. Ammonia synthesis from N₂ and H₂O using a lithium cycling electrification strategy at atmospheric pressure [J]. Energy & Environmental Science, 2017, 10(7): 1621-1630.
- [7] SINGH A R, ROHR B A, SCHWALBE J A, et al. Electrochemical ammonia synthesis-the selectivity challenge [J]. ACS Catalysis, 2017, 7(1): 706-709.
- [8] REYTER D, CHAMOULAUD G, BELANGER D, et al. Electrocatalytic reduction of nitrate on copper electrodes prepared by high energy ball milling [J]. Journal of Electroanalytical Chemistry, 2006, 596(1): 13-24.
- [9] ZHANG Y M, ZHAO Y L, CHEN Z, et al. Fe/Cu Composite electrode prepared by electrodeposition and its excellent behavior in nitrate electrochemical removal [J]. Journal of the Electrochemical Society, 2018, 165(9): 420-428.
- [10] GARCIA SEGURA S, LANZARINI LOPES M, HRISTOVSKI K, et al. Electrocatalytic reduction of nitrate: Fundamentals to full-scale water treatment applications [J]. Applied Catalysis B: Environmental, 2018, 236: 546-568.
- [11] 罗玉. 水中硝酸盐污染现状,危害及脱除技术 [J]. 工业 A, 2016, 8(7): 96.

 LUO Yu. Current status of nitrate pollution in water, hazards and removal technology [J]. Gongye A, 2016, 8(7): 96.

- [12] 王正祥,高贤彪,李明悦,等.天津市水体硝酸盐污染调查与空间分布研究[J].农业环境科学学报,2009,28(3):592-596.
 - WANG Zhengxiang, GAO Xianbiao, LI Mingyue, et al. Investigation and spatial distribution on nitrate contamination in water of Tianjin [J]. Journal of Agro-Environment Science, 2009, 28(3): 592-596.
- [13] GU B J, GE Y, CHANG S X, et al. Nitrate in groundwater of China: Sources and driving forces [J]. Global Environmental Change-Human and Policy Dimensions, 2013, 23(5): 1112 -1121.
- [14] 刘博,肖长来,梁秀娟,等.吉林市城区浅层地下水污染源识别及空间分布 [J].中国环境科学,2015,(2):457-464. LIU Bo, XIAO Changlai, LIANG Xiujuan, et al. Identification of shallow groundwater pollution factors and spatial distribution in the urban areas of Jilin City[J]. China Environmental Science, 2015,(2):457-464.
- [15] 冯有亮. 高效生物脱氮工艺的高氮(硝态氮)废水处理——以某光伏工厂 4GW 电池片废水项目为例 [J]. 低碳世界, 2020, 10(2): 3-4.
- [16] 茆亮凯. 电镀废水纳滤——反渗透探度处理与回用技术研究 [D]. 南京: 东南大学, 2011: 85-120.

 MAO Liangkai. Study on advanced treatment and reuse technology of electroplating wastewater by nanofiltration-reverse osmosis [D]. Nanjing: Southeast University, 2011:85-120.
- [17] 李善仁,何国富,刘金成,等.不锈钢冷轧厂废水站含酸废水处理系统 [J]. 中国给水排水,2009,25(6):70-73. LI Shanren, HE Guofu, LIU Jincheng, et al. Acid wastewater treament system in wastewater treatment station of stainless steel cold rolling mill[J]. China Water & Wastewater, 2009, 25(6):70-73.
- [18] WEI L, LIU D J, ROSALES B A, et al. Mild and selective hydrogenation of nitrate to ammonia in the absence of noble metals [J]. ACS Catalysis, 2020, 10(6); 3618-3628.
- [19] DE VOOYS A C A, KOPER M T M, VAN SANTEN R A, et al. The role of adsorbates in the electrochemical oxidation of ammonia on noble and transition metal electrodes [J]. Journal of Electroanalytical Chemistry, 2001, 506(2): 127-137.
- [20] SHEN Z H, LIU D R, PENG G G, et al. Electrocatalytic reduction of nitrate in water using Cu/Pd modified Ni foam cathode: High nitrate removal efficiency and N₂ selectivity [J]. Separation and Purification Technology, 2020, 241: 116743.
- [21] TENG W, BAI N, LIU Y, et al. Selective nitrate reduction to dinitrogen by electrocatalysis on nanoscale iron encapsulated in mesoporous carbon [J]. Environmental Science & Technology, 2018, 52(1): 230-236.
- [22] CHEN G F, YUAN Y F, JIANG H F, et al. Electrochemical reduction of nitrate to ammonia via direct eight electron transfer using a copper-molecular solid catalyst [J]. Nature Energy, 2020, 5(8): 605-613.
- [23] LIU Z W, DONG S S, ZOU D, et al. Electrochemically mediated nitrate reduction on nanoconfined zerovalent iron: Properties and mechanism [J]. Water Research, 2020, 173:

- 115596.
- [24] DUAN W J, LI G, LEI Z C, et al. Highly active and durable carbon electrocatalyst for nitrate reduction reaction [J]. Water Research, 2019, 161; 126-135.
- [25] GAO J N, JIANG B, NI C C, et al. Enhanced reduction of nitrate by noble metal-free electrocatalysis on P doped three-dimensional Co₃O₄ cathode: Mechanism exploration from both experimental and DFT studies [J]. Chemical Engineering Journal, 2020, 382; 123034.
- [26] SOLOVEICHIK G. Electrochemical synthesis of ammonia as a potential alternative to the Haber-Bosch process [J]. Nature Catalysis, 2019, 2(5): 377-380.
- [27] GAO J A, SHI N, GUO X B, et al. Electrochemically selective ammonia extraction from nitrate by coupling electron-and phase-transfer reactions at a three-phase interface [J]. Environmental Science & Technology, 2021, 55 (15): 10684-10694.
- [28] DU H T, GUO H R, WANG K K, et al. Durable electrocatalytic reduction of nitrate to ammonia over defective pseudobrookite ${\rm Fe_2TiO_5}$ nanofibers with abundant oxygen vacancies [J]. Angewandte Chemie International Edition, 2023, 135 (5): 10684–10694.
- [29] XIE L S, LIU Q, SUN S J, et al. High-efficiency electrosynthesis of ammonia with selective reduction of nitrate in neutral media enabled by self-supported Mn₂CoO₄ nanoarray [J]. ACS Applied Materials & Interfaces, 2022, 14(29): 33242 -33247.
- [30] ROSCA V, DUCA M, DE GROOT MT, et al. Nitrogen cycle electrocatalysis [J]. Chemical Reviews, 2009, 109(6): 2209 -2244.
- [31] URREGO ORTIZ R, BUILES S, CALLE VALLEJO F. Impact of intrinsic density functional theory errors on the predictive power of nitrogen cycle electrocatalysis models [J]. ACS Catalysis, 2022, 12(8): 4784-4791.
- [32] WANG Y, QU J H, WU R C, et al. The electrocatalytic reduction of nitrate in water on Pd/Sn-modified activated carbon fiber electrode [J]. Water Research, 2006, 40 (6): 1224-1232.
- [33] YANG X, WANG R, WANG S, et al. Sequential active-site switches in integrated Cu/Fe - TiO₂ for efficient electroreduction from nitrate into ammonia [J]. Applied Catalysis B: Environmental, 2023, 325; 122360.
- [34] LIU J X, RICHARDS D, SINGH N, et al. Activity and selectivity trends in electrocatalytic nitrate reduction on transition metals [J]. ACS Catalysis, 2019, 9(8): 7052-7064.
- [35] SU L, HAN D D, ZHU G J, et al. Tailoring the assembly of iron nanoparticles in carbon microspheres toward high - performance electrocatalytic denitrification [J]. Nano Letters, 2019, 19(8): 5423-5430.
- [36] BAE S E, STEWART K L, GEWIRTH A A. Nitrate adsorption and reduction on Cu(100) in acidic solution [J]. Journal of the American Chemical Society, 2007, 129 (33): 10171-10180.

- [37] YAO F B, JIA M C, YANG Q, et al. Highly selective electrochemical nitrate reduction using copper phosphide self-supported copper foam electrode: Performance, mechanism, and application [J]. Water Research, 2021, 193: 116881.
- [38] YAO F B, YANG Q, ZHONG Y, et al. Indirect electrochemical reduction of nitrate in water using zero-valent titanium anode: Factors, kinetics, and mechanism [J]. Water Research, 2019, 157: 191-200.
- [39] LIU Y, ZHOU J, GONG J, et al. The investigation of electrochemical properties for Fe₃O₄@ Pt nanocomposites and an enhancement sensing for nitrite [J]. Electrochimica Acta, 2013, 111: 876-887.
- [40] DIMA G E, DE VOOYS A C A, KOPER M T M. Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions [J]. Journal of Electroanalytical Chemistry, 2003, 554: 15-23.
- [41] CHEN C, LI K, LI C, et al. Combination of Pd-Cu catalysis and electrolytic H₂ evolution for selective nitrate reduction using protonated polypyrrole as a cathode [J]. Environmental Science & Technology, 2019, 53(23): 13868-13877.
- [42] BAI M H, BIAN L J, SONG Y, et al. Electrochemical codeposition of vanadium oxide and polypyrrole for high-performance supercapacitor with high working voltage [J]. ACS Applied Materials & Interfaces, 2014, 6(15): 12656-12664.
- [43] SHIN H, JUNG S, BAE S, et al. Nitrite reduction mechanism on a Pd surface [J]. Environmental Science & Technology, 2014, 48(21): 12768-12774.
- [44] XU Y, WANG M Z, REN K L, et al. Atomic defects in pothole-rich two-dimensional copper nanoplates triggering enhanced electrocatalytic selective nitrate-to-ammonia transformation [J]. Journal of Materials Chemistry A, 2021, 9(30): 16411-16417
- [45] DE GROOT M T, KOPER M T M. The influence of nitrate concentration and acidity on the electrocatalytic reduction of nitrate on platinum [J]. Journal of Electroanalytical Chemistry, 2004, 562(1): 81-94.
- [46] DE VOOYS A C A, VAN SANTEN R A, VAN VEEN J A R. Electrocatalytic reduction of NO₃ on palladium/copper electrodes [J]. Journal of Molecular Catalysis A: Chemical, 2000, 154(1-2): 203-215.
- [47] EL DEAB M S. Electrochemical reduction of nitrate to ammonia at modified gold electrodes [J]. Electrochimica Acta, 2004, 49(9-10): 1639-1645.
- [48] LI J, ZHAN G M, YANG J H, et al. Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters
 [J]. Journal of the American Chemical Society, 2020, 142
 (15): 7036-7046.
- [49] MARTINEZ J, ORTIZ A, ORTIZ I. State-of-the-art and perspectives of the catalytic and electrocatalytic reduction of aqueous nitrates [J]. Applied Catalysis B: Environmental, 2017, 207; 42-59.
- [50] ALVAREZ B, RODES A, PEREZ J M, et al. Spectroscopic study of the nitric oxide adlayers formed from nitrous acid solu-

- tions on palladium-covered platinum single-crystal electrodes [J]. Langmuir, 2000, 16(10): 4695-4705.
- [51] MA X, WANG Y F, WU Y Y, et al. Pd-Cu modified cerium oxide catalysts for selectively electrocatalytic denitrification: Significant roles of oxygen vacancies and activated hydrogen [J]. Separation and Purification Technology, 2023, 306: 122606.
- [52] XUY, RENKL, RENTL, et al. Cooperativity of Cu and Pd active sites in CuPd aerogels enhances nitrate electroreduction to ammonia [J]. Chemical Communications, 2021, 57(61): 7525-7528.
- [53] HAN Y, ZHANG X Y, CAI W W, et al. Facet-controlled palladium nanocrystalline for enhanced nitrate reduction towards ammonia [J]. Journal of Colloid and Interface Science, 2021, 600; 620-628.
- [54] WU Z Y, KARAMAD M, YONG X, et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst [J]. Nature Communications, 2021, 12(1): 2870.
- [55] LACASA E, CANIZARES P, LLANOS J, et al. Removal of nitrates by electrolysis in non-chloride media: Effect of the anode material [J]. Separation and Purification Technology, 2011, 80(3): 592-599.
- [56] HE L, ZENG T J, YAO F B, et al. Electrocatalytic reduction of nitrate by carbon encapsulated Cu-Fe electroactive nanocatalysts on Ni foam [J]. Journal of Colloid and Interface Science, 2023, 634; 440-449.
- [57] DAIYAN R, TRAN PHU T, KUMAR P, et al. Nitrate reduction to ammonium: From CuO defect engineering to waste NO_x -to-NH₃ economic feasibility [J]. Energy & Environmental Science, 2021, 14(6): 3588-3598.
- [58] WANG Y H, XU A, WANG Z Y, et al. Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption [J]. Journal of the American Chemical Society, 2020, 142(12): 5702-5708.
- [59] JIA R R, WANG Y T, WANG C H, et al. Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO₂[J]. ACS Catalysis, 2020, 10(6): 3533 -3540.
- [60] ZHANG S, LI M, LI J C, et al. High-ammonia selective metal-organic framework-derived Co-doped Fe/Fe₂O₃ catalysts for electrochemical nitrate reduction [J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(6); e2115504119.
- [61] NICOLE S L D, LI Y H, XIE W J, et al. Heterointerface and tensile strain effects synergistically enhances overall water – splitting in Ru/RuO₂ aerogels [J]. Small, 2023; 2206844.
- [62] CALLE VALLEJO F, HUANG M H, HENRY J B, et al. Theoretical design and experimental implementation of Ag/Au electrodes for the electrochemical reduction of nitrate [J]. Physical Chemistry Chemical Physics, 2013, 15(9): 3196– 3202.
- [63] CHAPLIN B P, REINHARD M, SCHNEIDER W F, et al. Critical review of Pd-based catalytic treatment of priority contam-

- inants in water [J]. Environmental Science & Technology, 2012, 46(7): 3655-3670.
- [64] REN Y F, ZHENG W T, LI S, et al. Atomic H*-mediated electrochemical removal of low concentration antimonite and recovery of antimony from water [J]. Journal of Hazardous Materials, 2023, 445: 130520.
- [65] CHEN K L, AHMAD M S, CHEN C L. Enhanced nitrate reduction over functionalized Pd/Cu electrode with tunable conversion to nitrogen and sodium hydroxide recovery [J]. Science of the Total Environment, 2023, 869; 161849.
- [66] LIM J, LIU C Y, PARK J, et al. Structure sensitivity of Pd facets for enhanced electrochemical nitrate reduction to ammonia [J]. ACS Catalysis, 2021, 11(12): 7568-7577.
- [67] LIU R, ZHAO H C, ZHAO X Y, et al. Defect sites in ultrathin Pd nanowires facilitate the highly efficient electrochemical hydrodechlorination of pollutants by H* (ads) [J]. Environmental Science & Technology, 2018, 52(17): 9992-10002.
- [68] LIU J Y, CHOE J K, SASNOW Z, et al. Application of a Re-Pd bimetallic catalyst for treatment of perchlorate in waste ionexchange regenerant brine [J]. Water Research, 2013, 47 (1): 91-101.
- [69] GAO W S, XIE K F, XIE J, et al. Alloying of Cu with Ru enabling the relay catalysis for reduction of nitrate to ammonia
 [J]. Advanced Materials, 2023: 2202952.
- [70] DENG X H, YANG Y P, WANG L, et al. Metallic Co nanoarray catalyzes selective NH₃ production from electrochemical nitrate reduction at current densities exceeding 2 A · cm⁻²[J]. Advanced Science, 2021, 8(7):2004523.
- [71] LIANG J, DENG B, LIU Q, et al. High-efficiency electrochemical nitrite reduction to ammonium using a Cu₃P nanowire array under ambient conditions [J]. Green Chemistry, 2021, 23(15): 5487-5493.
- [72] REYTER D, BELANGER D, ROUE L. Study of the electroreduction of nitrate on copper in alkaline solution [J]. Electrochimica Acta, 2008, 53(20): 5977-5984.
- [73] KIM D E, PAK D. Ti plate with TiO₂ nanotube arrays as a novel cathode for nitrate reduction [J]. Chemosphere, 2019, 228: 611-618.
- [74] ZHONG Y, XIA X H, SHI F, et al. Transition metal carbides and nitrides in energy storage and conversion [J]. Advanced Science, 2016, 3(5): 1500286.
- [75] YUN Q B, LI L X, HU Z N, et al. Layered transition metal dichalcogenide-based nanomaterials for electrochemical energy storage [J]. Advanced Materials, 2020, 32(1): 1903826.
- [76] GRUBER N, GALLOWAY J N. An earth-system perspective of the global nitrogen cycle [J]. Nature, 2008, 451(7176): 293-296.
- [77] ZHOU Y Z, LU R H, TAO X F, et al. Boosting oxygen electrocatalytic activity of Fe-N-C catalysts by phosphorus incorporation [J]. Journal of the American Chemical Society, 2023, 145(6): 3647-3655.
- [78] CHEN X, ZHANG T, KAN M, et al. Binderless and oxygen vacancies rich FeNi/graphitized mesoporous carbon/Ni foam

- for electrocatalytic reduction of nitrate [J]. Environmental Science & Technology, 2020, 54(20): 13344-13353.
- [79] ZHAO X Y, GENG Q, DONG Fan, et al. Boosting the selectivity and efficiency of nitrate reduction to ammonia with a single-atom Cu electrocatalyst [J]. Chemical Engineering Journal, 2023, 466 (15): 143314.
- [80] SHIH Y J, WU Z L, HUANG Y H, et al. Electrochemical nitrate reduction as affected by the crystal morphology and facet of copper nanoparticles supported on nickel foam electrodes (Cu/Ni) [J]. Chemical Engineering Journal, 2020, 383; 123157.
- [81] YANG Y, LI J X, WANG H, et al. An electrocatalytic membrane reactor with self cleaning function for industrial wastewater treatment [J]. Angewandte Chemie-International Edition, 2011, 50(9): 2148-2150.
- [82] LI Y H, LIU P F, PAN L F, et al. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water [J]. Nature Communications, 2015, 6: 8064.
- [83] SU L H, LI K, ZHANG H B, et al. Electrochemical nitrate reduction by using a novel Co₃O₄/Ti cathode [J]. Water Research, 2017, 120: 1-11.
- [84] MENG B, ZHAO Z B, WANG X Z, et al. Selective catalytic reduction of nitrogen oxides by ammonia over Co₃O₄ nanocrystals with different shapes [J]. Applied Catalysis B: Environmental, 2013, 129: 491-500.
- [85] MA X J, LI M, FENG C P, et al. Development and reaction mechanism of efficient nano titanium electrode: Reconstructed nanostructure and enhanced nitrate removal efficiency [J]. Journal of Electroanalytical Chemistry, 2016, 782: 270-277.
- [86] LIU C, ZHANG A Y, PEI D N, et al. Efficient electrochemical reduction of nitrobenzene by defect engineered TiO_{2-x} single crystals [J]. Environmental Science & Technology, 2016, 50(10): 5234-5242.
- [87] DEVARD A, AGHEMO V S, DORANTES C A C, et al. Pd and In addition onto Au nanoparticles supported on TiO₂ as a catalytic formulation for NO₃ reduction in water [J]. Reaction Kinetics Mechanisms and Catalysis, 2017, 120(1): 39-54.
- [88] QIN J Z, LIU N S, WEI Y, et al. The mechanism of efficient photoreduction nitrate over anatase TiO₂ in simulated sunlight [J]. Chemosphere, 2022, 307: 135921.
- [89] CAMPOSECO R, ZANELLA R. Catalytic behavior of gold nanoparticles supported on a TiO₂-Al₂O₃ mixed oxide for CO oxidation at low temperature [J]. Environmental Science and Pollution Research, 2022, 29(51): 76992-7006.
- [90] GUO Y, ZHANG R, ZHANG S C, et al. Pd doping-weakened intermediate adsorption to promote electrocatalytic nitrate reduction on TiO₂ nanoarrays for ammonia production and energy supply with zinc-nitrate batteries [J]. Energy & Environmental Science, 2021, 14(7): 3938-3944.
- [91] NIU Z D, FAN S Y, LI X Y, et al. Bifunctional coppercobalt spinel electrocatalysts for efficient tandem-like nitrate reduction to ammonia [J]. Chemical Engineering Journal,

- 2022, 450: 138343.
- [92] ZHANG C, CHEN D M, WAN J P, et al. Recent advances in electrochemical cascade cyclization reactions [J/OL]. Synthesis- Stuttgart, 2023 [2023 - 02 - 20]. https://www. thieme-connect.com/products/ejournals/abstract/10.1055/a-2039-1728? issue=10.1055/s-013-56302.
- [93] LU X M, SONG H Q, CAI J M, et al. Recent development of electrochemical nitrate reduction to ammonia: A mini review [J]. Electrochemistry Communications, 2021, 129: 107094.
- [94] DING J, LI W, ZHAO Q L, et al. Electroreduction of nitrate in water: Role of cathode and cell configuration [J]. Chemical Engineering Journal, 2015, 271: 252-259.
- [95] GAO J A, SHI N, LI Y F, et al. Electrocatalytic upcycling of nitrate wastewater into an ammonia fertilizer via an electrified membrane [J]. Environmental Science & Technology, 2022, 56(16): 11602-11613.
- [96] BOGDANOVSKII G A, SAVEL'EVA T V, SABUROVA T S. Phenol conversions during electrochemical generation of active chlorine [J]. Russian Journal of Electrochemistry, 2001, 37 (8): 865-869.
- [97] JINNAI M, SHIMAMURA C, KUNTOLAKSONO S, et al. Electrochemical properties of chlorine dioxide using aminated glassy carbon electrodes fabricated by electrolysis [J]. Electrochemistry, 2020, 88(5): 347-349.
- [98] ZHANG X, WANG Y, WEI S, et al. Assessing the chlorine metabolism and its resource efficiency in chlor-alkali industrial symbiosis-A case of Shanghai Chemical Industry Park [J]. Journal of Cleaner Production, 2022, 380: 134934.
- [99] QUAN F J, ZHAN G M, ZHOU B, et al. Electrochemical removal of ammonium nitrogen in high efficiency and N₂ selectivity using non-noble single-atomic iron catalyst [J]. Journal of Environmental Sciences, 2023, 125; 544-552.
- [100] ZHENG J Y, JIANG L, LYU Y H, et al. Green synthesis of nitrogen-to-ammonia fixation: Past, present, and future [J]. Energy & Environmental Materials, 2022, 5(2): 452 -457.
- [101] VAN LANGEVELDE P H, KATSOUNAROS I, KOPER M T M. Electrocatalytic nitrate reduction for sustainable ammonia production [J]. Joule, 2021, 5(2): 290–294.
- [102] BAGHBAN A, BAHADORI M, LEMRASKI A S, et al. Prediction of solubility of ammonia in liquid electrolytes using Least Square Support Vector Machines [J]. Ain Shams Engineering Journal, 2018, 9(4): 1303-1312.
- [103] LIU M, LI Y, WANG H Z, et al. Ecosystem complexity explains the scale-dependence of ammonia toxicity on macroinvertebrates [J]. Water Research, 2022, 226: 119266.
- [104] HOU D X, IDDYA A, CHEN X, et al. Nickel-based membrane electrodes enable high-rate electrochemical ammonia recovery [J]. Environmental Science & Technology, 2018, 52(15); 8930-8938.
- [105] ZHANG C Y, MA J X, SONG J K, et al. Continuous ammonia recovery from wastewaters using an integrated capacitive flow electrode membrane stripping system [J]. Environmental

- Science & Technology, 2018, 52(24): 14275-14285.
- [106] 周明罗, 黄飞. 吹脱法处理高浓度氨氮废水的研究 [J]. 工业安全与环保, 2008(11): 14-16. ZHOU Mingluo, HUANG Fei. Study on treatment of high concentration ammonia - nitrogen wastewater by blow - off method [J]. Industrial Safety and Environmental Protection, 2008(11):14-16.
- [107] 王文斌,董有,刘士庭.吹脱法去除垃圾渗滤液中的氨氮研究[J].环境污染治理技术与设备,2004,5(6):51-53.
 - WANG Wenbin, DONG You, LIU Shiting. Study on removal of ammonia nitrogen from landfill leachate by blow-off [J]. Techniques and Equipment for Environmental Pollution Control, 2004, 5(6): 51–53.
- [108] HE L, YAO F B, ZHONG Y, et al. Achieving high-performance electrocatalytic reduction of nitrate by N - rich carbon - encapsulated Ni - Cu bimetallic nanoparticles supported nickel foam electrode [J]. Journal of Hazardous Materials, 2022, 436; 129253.

- [109] VEERAMANI K, JANANI G, KIM J, et al. Hydrogen and value—added products yield from hybrid water electrolysis; A critical review on recent developments [J]. Renewable & Sustainable Energy Reviews, 2023, 177; 113227.
- [110] MAO R, ZHAO X, LAN H C, et al. Graphene-modified Pd/C cathode and Pd/GAC particles for enhanced electrocatalytic removal of bromate in a continuous three-dimensional electrochemical reactor [J]. Water Research, 2015, 77; 1-12.
- [111] YIN F J, LIU H. The j-pH diagram of interfacial reactions involving H⁺ and OH⁻ [J]. Journal of Energy Chemistry, 2020, 50: 339-343.
- [112] GAO P, XUE Z H, ZHANG S N, et al. Schottky barrier-in-duced surface electric field boosts universal reduction of NO_x in water to ammonia [J]. Angewandte Chemie-International Edition, 2021, 60(38): 20711-20716.
- [113] TALEKAR G V, MUTNURI S. Electrochemical removal and recovery of ammonia and phosphates from blackwater and wetland passed blackwater [J]. Sustainable Energy Technologies and Assessments, 2021, 47; 101374.