试验研究

京津唐区域火电厂碳排放模型的研究

白静洁,李飞

(国网电力科学研究院科东公司,北京 100192)

摘要:分析了火电厂发电量与 CO_2 排放量的关系,提出火电厂碳排放的定量模型,以京津 唐目标区域为例进行实例计算,并就影响排放的因素进行比较分析,最后总结火电厂 CO_2 减排措施。

关键词:火力发电;CO2排放量;计算模型;排放系数;减排措施

中图分类号:X701

文献标识码:A

文章编号: 1006-8759(2013)06-0015-05

THE MODEL OF CARBON DIOXIDE EMISSIONS FOR THERMAL POWER PLANTS IN BEIJING-TIANJIN-TANGSHAN TARGET AREA

BAI Jing-jie, LI Fe

(State Grid Electric Power Research Institute Kedong Company, Beijing 100192)

Abstract: This paper analyzes the relationship of generating capacity and carbon dioxide emissions in thermal power plants and establishes a quantifying model of carbon dioxide emissions for thermal power plants. Then by this model, it gives a specific calculation example in Beijing—Tianjin—Tangshan target area. This paper also gives a comparative analysis and a comprehensive evaluation of the emission factors. Finally, it introduces and concludes the major technologies for carbon dioxide emission reduction.

Keywords: thermal power plant; CO₂ emission; calculating model; emission factor; technologies for carbon dioxide emission reduction

1 引言

目前,大量 CO₂ 的排放所带来全球性的极端 气候问题已经引起科学界、各国政府及公众的极 大关注。同时,低碳经济作为一种新的能源发展观 已成为世界能源生产和发展的制约因素,而中国 火力发电以煤为主的能源结构在未来几十年不会 改变,煤炭的燃烧必定会产生 CO₂。

文中选取京津唐区域中部分燃煤电厂来定量

研究火电厂的发电量与所产生 CO_2 的关系,旨在通过模型计算出目标区域 CO_2 的排放量,分析经济发展、技术进步对火电厂 CO_2 排放量的影响,指出减少 CO_2 排放量的措施。

2 模型流程

由于燃煤电厂发电量与 CO_2 的排放量之间不存在直接的联系,因此若要得到两者之间的关系,必须从根本分析。一般某个燃煤电厂的发电量是已知的,煤炭中含有一定量的碳,而其中部分碳燃烧后会生成 CO_2 。

基于以上的说明本文设计了如图 1 所示的火电厂碳排放模型。模型中设定电厂的发电量为输入参数,碳排放的数据和与经济的关系作为模型

收稿日期:2013-08-08

第一作者简介:白静洁,(1986 出生)山西人,华北电力大学毕业,硕士,现任北京科东电力控制系统有限责任公司工作,工程师,主要从事电力调度控制系统的设计开发、能源-经济-环境协调关系的研究,包括调度业务中工作流的设计,调度相关数据的交换整合,发电、供电、能源-经济-环境等应用模型的研究。

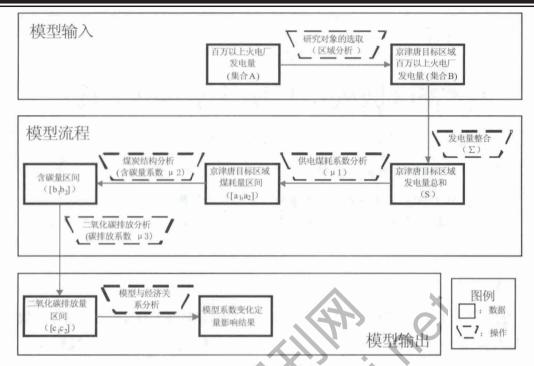


图 1 碳排放模型流程图

的输出结果。

3 模型实例

3.1 对象的选取

京津唐区域又称环渤海地区,包括辽宁、河北、北京、天津和山东,范围较广,本文只选取北京、天津及部分河北省电厂进行研究。以下我们将研究区域称为京津唐目标区域。图 2 标注了京津唐区域电厂,并对京津唐目标区域中河北省电厂突出显示。根据 2009 年全国百万火电厂情况表,河北省共有百万发电厂 14 个,其中京津唐目标区

域有 10 个。据统计数据显示 2009 年河北省总的 火力发电量为 1733 万 kWh,见表 1。2009 年河北省百万以上电厂发电总量为 1128 万 kWh,见表 2。京津唐目标地区的十个百万 kWh 发电厂为张家口发电厂(大唐)、国华定州发电有限公司、河北国华沧东发电有限责任公司、衡水电厂、河北大唐国际王滩发电有限责任公司、西柏坡第二发电有限责任公司、华能上安电厂、徒河发电厂(大唐)。这十个百万发电厂的电量总和为 862 万 kWh。

3.2 模型的建立



图 2 京津唐火电厂分布图 (注:黄色标注京津唐目标区域中河北地区百万电厂)

表 1 历年华北地区火电区域发电统计 单位:万 kWh

年份	全国总计	华北地区 总计	华北地区 的比例/%	北京市	天津市	河北省
2006	23742	4920	20.72	206	363	1451
2007	27207	5790	21.28	223	399	1633
2008	28030	5990	21.37	243	397	1580
2009	30117	6372	21.16	241	413	1733
2010	32261	_	_	-	430	1797.5
2011	34255.8	_	_	-	444.8	1876.8
2012	36250.6	-	-	-	459.6	1956.1
2013	38245.4	-	-	-	474.4	2035.4
2014	40240.2	-	-		489.2	2114.7
2015	422.35	-	-		504	2194

注:2006~2009年是实际数据,之后的是推测数据,实际数据均来自历年统计年鉴

表 2 河北省百万以上发电厂发电量

表 2 冽北自日月以上发电/	友电重
发电厂	发电量/(万 kWh)
张家口发电厂(大唐)	131
国华定州发电有限公司	86
河北国华沧东发电有限责任公司	99
秦皇岛发电厂	87
河北西柏坡发电有限责任公司	59
衡水电厂	64
邯郸发电厂▲	68
河北大唐国际王滩发电有限责任公司	70
西柏坡第二发电有限责任公司	66
国电河北龙山发电有限责任公司▲	66
三河发电有限责任公司▲	69
华能上安电厂	118
徒河发电厂(大唐)	82
邢台发电厂▲	63

2009 年河北省百万以上电厂发电量表▲标注为地图中无法显示出的电厂

根据之前总结的碳排放计算方法、分以下几个步骤得出最终火电碳排放模型:京津唐目标区域发电量整合、供电耗煤系数分析、煤的含碳量系数分析、碳生成二氧化碳系数分析。

3.2.1 京津唐目标区域发电量整合

(1)原理:依据研究对象的选取结果,京津唐目标区域的总电量包括三大部分:北京全部火电厂、天津全部火电厂、部分河北省火电厂。北京全部火电厂和天津全部火电厂发电量是已知的,部分河北省火电厂发电量则需要通过计算得出。我们在河北省只选取 10 个百万以上发电厂,根据河北省百万以上发电厂与河北省总发电量的比例来推出这 10 个百万以上发电厂周围的所有电厂,以此来求出京津唐目标区域中河北省发电厂的总电量。求出京津唐目标区域中河北省发电厂的总电量后,再加和北京与天津的火力总电量,就得出京津唐目标区域的火力总电量。

(2)模型:

$$\frac{S_1}{S_2} = \frac{S_3}{S_4} \tag{1}$$

式中: S_1 是河北省百万以上电厂发电总量, S_2 是河北省总的火力发电量, S_3 是京津唐目标区域河北省的百万以上电厂发电量, S_4 是京津唐目标区域区域河北省总的火力发电量。

$$S=S_4+S_5+S_6$$
 (3)

式中:S 是京津唐目标区域总电量; S_4 是京津 唐目标区域河北省总的火力发电量; S_5 是北京总 火力发电量; S_6 是天津总火力发电量。

(3)实例计算:

根据 2009 年数据 : S_1 =1128 万 kWh , S_2 =1733 万 kWh , S_3 =862 万 kWh , S_5 =241 万 kWh , S_6 =413 万 kWh

得出 S₄=1324 万 kWh,S=1978 万 kWh 3.2.2 供电耗煤系数分析

(1)原理:供电煤耗(net coal consumption rate) 又称为供电标准煤耗,是指火力发电企业每向外 提供 1kWh 电能所平均消耗的标准煤量,是国家 对火电厂的重要考核指标。发电煤耗 (gross coal consumption rate)又称为发电标准煤耗,是指火力 发电企业每发 1kWh 电能所平均消耗的标准煤量 ^[8]。发电煤耗不用考虑电力的传输损失,而供电煤 耗则要考虑到电力在变压远距离传输上的损耗, 因此本文选取的是供电耗煤指标。据电力行业主 要能耗指标,且据中国电力企业联合会数据,2009 年1至11月,全国平均供电煤耗 339g/kwh。

(2)模型:

$$a=\mu_1 \times S$$
 (4)

式中:a 为耗煤量; μ_l 为耗煤量系数;S 为京津唐目标区域总电量:

选取耗煤量系数区间为[0.335,0.400]

(3)实例计算:

S=1978 万 kWh

则耗煤量区间[a₁,a₂]为:[662.63×10⁴kg,791.2×10⁴kg]

3.2.3 煤的含碳量系数分析

(1)原理:煤主要由碳、硫、氧、氢、氮和磷等元素组成,碳、氧、氢三者的总和约占有机质的95%以上,是非常重要的能源,也是化学、冶金工业的重要原料,有烟煤、褐煤、无烟煤、半无烟煤这

四种分类。煤的种类不同,含碳量也就不同,产生的 CO_2 也就不一样。如泥炭中碳含量为 $50\%\sim60\%$,褐煤为 $60\%\sim70\%$,烟煤为 $74\%\sim92\%$,无烟煤为 $90\%\sim98\%$ 。一般电厂使用贫煤、烟煤、褐煤较多。

(2)模型:

$$b=\mu_2 \times a$$
 (5)

式中:b 为含碳量;为含碳量系数;a 为耗煤量。 选取含碳量系数区间[55%,90%]

(3) 实例计算:

耗煤量区间 [a₁,a₂] 为:[662.63×10⁴kg,791.2×10⁴kg]

则含碳量区间 $[b_1,b_2]$ 为: $[364.45 \times 10^4 \text{kg}, 712.08 \times 10^4 \text{kg}]$

3.2.4 碳生成二氧化碳系数分析

(1)原理:根据化学方程式:

$$C + O_2 = CO_2$$

 $12 \quad 32 \quad 44$
 $1 \quad x$
 $X=44/12=3.67$ (6)

理论上 1 kg 碳产生约 3.67kgCO_2 ,但碳经过燃烧所产生的物质有二氧化碳、一氧化碳、碳氢化合物、煤灰等,实际产生二氧化碳排放量为 $2.5 \sim 3 \text{kg}_{\odot}$

(2)模型:

$$C(kg) = \mu_3 \times b(kg)$$
 (7)

式中:C 为二氧化碳排放量; μ_3 为碳生成二氧化碳系数;b 为含碳量。

选取碳生成二氧化碳系数区间[2.5.3.0]

(3)实例计算:

含碳量区间 [b₁,b₂] 为:[364.45×10⁴kg,712.08×10⁴kg]

则二氧化碳排放量区间 $[C_1,C_2]$ 为: $[911.12 \times 10^4 \text{kg}, 2136.24 \times 10^4 \text{kg}]$

3.3 数据处理及模型产生

根据模型的建立过程,我们可以得到最终的 火电碳排放模型。

(1)原理:

$$C(kg) = \mu_3 \times b(kg) = \mu_3 \times \mu_2 \times a(kg) = \mu_3 \times \mu_2 \times \mu_1 \times S$$
(kWh)
(8)

式中:C 为二氧化碳排放量; μ_3 为碳生成二氧化碳系数; μ_2 为含碳量系数; μ_1 为煤耗量系数;S 为京津唐目标区域总发电量。

(2)模型:

$$C(kg) = \mu_4 \times S \tag{9}$$

式中:C 为二氧化碳排放量; μ_4 为火电二氧化碳排放系数:S 为京津唐目标区域总发电量:即

$$\mu_4 = \mu_3 \times \mu_2 \times \mu_1 \tag{10}$$

(3)实例计算:由公式(10)得出,火电二氧化碳排放系数区间为:[0.46,1.08],即发 1kwh(1度)电会产生二氧化碳 0.46~1.08kg, 也可写作 460~1080g。

S=1978 万 kWh

则京津唐目标地区二氧化碳排放量区间[C_1 , C_2]为:[909.88×10 4 kg,2136.24×10 4 kg]

3.4 模型验证

根据《中国能源统计年鉴 2009》中记载电力发电碳排放数据,见表 3。可知本文研究得出的模型结果:发 1kwh(1 度)电可产生二氧化碳 460-1080g,符合 2005 年-2008 年实际情况。

表 3 电力发电碳排放情况

	项目	2005 年	2006年	2007年	2008年
火力发	电碳排放总量/MtCO ₂	1915.94	2211.20	2490.78	2477.05
火力	7发电量/(t/wh)	2047.3	2369.6	2722.9	2790
度电	排放/(gCO ₂ /kwh)	935.8	933.2	914.7	887.8

3.5 模型与经济发展的关系

经济发展迅速,该模型方法也是适应经济发展变化的,但具体的参数会发生变化。以下根据模型步骤分别进行论述。

3.5.1 供电耗煤系数变化分析

供电耗煤系数会随经济发展、技术进步发生变化。据十二五提出的电力行业目标,2015 年火电厂平均 1kwh(1 度)消耗的供电煤耗由 2000 年的 392g 标准煤降到了 330g 标准煤,2020 年将达到 320g 标准煤。即 1kg 的标准煤可以发电 3kwh(3 度)。依据单一变量原则,我们分析供电煤耗系数每下降 0.01kg 对最终火电二氧化碳排放系数的影响,见表 4。

表 4 供电耗煤系数影响

3.5.2 煤的含碳量系数变化分析

不同种类的煤中含碳量是相对稳定的,因此 该步骤的参数不会变化。

3.5.3 碳生成二氧化碳系数变化分析

提高燃煤电厂的技术及设施能让煤炭的燃烧 更充分,会产生更多的二氧化碳,因此该步骤的参 数会随着技术进步而发生变化。依据单一变量原 则,我们分析碳生成二氧化碳系数每上升 0.1 倍 对最终火电二氧化碳排放系数的影响,见表 5。

表 5 碳生成二氧化碳系数影响

碳生成								
二氧化	2.5	2.6	2.7	2.8	2.9	3.0	3.1	3.2
碳系数								
火电二	0.460	0.470	0.407	0.516	0.524	0.552	0.571	0.580
火电二 氧化碳	0.400	0.479	0.497	0.510	0.554	0.552	0.571	0.369
排放系	~	~	~	- 1 000	~	1 000	- 1 1 1 6	~ 1.150
排放系 数区间	0.900	0.936	0.972	1.008	1.044	1.080	1.116	1.152

因此,模型的参数会随着技术进步而变化,下面将论述减少二氧化碳排放的技术。

4 燃煤电厂减少 CO。排放优化方案

国际上二氧化碳减排方案主要有五种:一是优化能源结构,开发核能、风能和太阳能等可再生能源和新能源;二是提高植被面积,消除乱砍滥伐,保护生态环境;三是从化石燃料的利用中捕获二氧化碳并加以利用或封存;四是开发生物质能源,大力发展低碳或无碳燃料;五是提高能源利用效率和节能,包括开发清洁燃烧技术和燃烧设备等。而火电厂二氧化碳的减排思路主要有:控制二氧化碳的生成,即节能增效,发展核电和使用可再生能源;直接从火电厂烟气中捕集 CO₂,将其永久封存或资源化。表6列出一些具体技术并加以评价说明。

表 6 燃煤电厂减少 CO2 的排放措施及评价

		OO2 43 14 10 10 10 10 10 10 10 10 10 10 10 10 10
具体技术	原 理	评价
新型 O ₂ / CO ₂ 循环 燃烧技术	一部分烟气经再循环系统送至炉前,与空气分离装置制取的含氧量在	在液化处理以 CO_2 为主的烟气时, SO_2 同时被液化回收,可以省去烟气脱硫设备。在 O_2/CO_2 的气氛下, NO 的生成也将会减少,如果再结合低 NO 的燃烧: 技术,则有可能不用或少用脱硝设备。同时,采用该技术烟气量可以大大减少(仅为传统方式的 $1/5$),排烟损失也将大幅度降低,电厂效率有显著提高
CaO 碳酸 化-煅烧 循环技术	在使用 CaO 和 CO_2 的反应生成物 $CaCO_2$ 的煅烧循环过程中来捕捉烟气中的 CO_2	这种技术可以用于燃烧烟气中 CO_2 的分离,也可以用于气化过程:中的 CO_2 分离,在处理过的尾部烟气中 CO_2 含量很低,并且由于其能耗低、吸收剂也较为经济,不需要对锅炉的尾部烟气进行升压或降温处理等,因此有比较好的应用前景
生物质共 燃技术	该技术可以将现有的燃煤电厂改造成生物质共燃电厂,实现 对可再生能源的发电	这种技术可以提高能源的转换效率, 获得较高的 CO_2 减排效益, 并且投资费用和商业风险都普遍低于专门的生物质电厂,是一种非常实用的碳减排技术
烟气中二 氧化碳的 捕集技术	从大型固定排放源捕集到的二氧化碳集中输送到储存地点的 运输系统	二氧化碳的捕集不适合用于大量分散的移动排放源,而只是适用 于大型固定的排放源

5 总结与展望

京津唐目标区域火电碳排放模型是按步骤: 京津唐目标区域发电量整合、供电耗煤系数分析、 煤的含碳量系数分析、碳生成二氧化碳系数分析, 得出最终碳排放模型:发 1kwh(1 度)电会产生二 氧化碳 0.46~1.08kg,也可写作 460~1080g 二氧化 碳。通过该模型可以定量地分析燃煤电厂发电量 与所产生的 CO₂ 关系,并选取了京津唐部分电厂 为例,算出了研究区域燃煤电厂 CO₂ 的排放量。并 论述了该模型与经济发展,技术进步的关系。其中 重点论述了减少火电厂 CO₂ 排放量的措施。

未来会加强对计算过程的理论研究,通过数学分析、概率论分析、循环反馈、多因素分析等方法对所选参数区间进行验证,以获得更精确的结果。

参考文献

- [1] 栾健, 陈德珍. 二氧化碳减排技术及趋势. 能源研究与信息, 2009
- [2]Energy White Paper Our Energy Future—Creating A LowCarbon Economy[M].DTI,UK.February, 2003.
- [3] 陈晓进.国外二氧化碳减排研究及对我国的启示.国际技术经济研究, 2006, 9(3): 21-25.
- [4] 赵玉文. 太阳能技术对我国未来减排 $\mathrm{CO_2}$ 的贡献. 中国工程科学, 2003, 5(4): 38–40.
- [5] 黄黎明, 陈赓良. 二氧化碳的回收利用与捕集储存. 石油与天然气化工, 2006, 35(5): 354-358.
- [6] CurtMWhite,Brian R Strazisar,Evan JGranite,eta1.Separationand capture of CO₂ from large stationary sources and sequestration in geological formations—coal beds and deep saline aquifers.Air& Waste ManagementAssociation, 2003, 53(1047–3289):645~715.