烟气脱汞吸附剂研究进展

马 昭,梁雪晴,王仁政,徐静攀,郝润龙*

(华北电力大学环境科学与工程系燃煤电站烟气多污染物协同控制

河北省重点实验室,河北保定071003)

摘要:重金属汞作为一种全球性污染物,对人类健康和生态环境构成严重威胁。开发高效脱汞技术对于减少烟气中单质汞(Hg⁰)排放、控制大气汞污染具有重要的现实意义。在众多脱汞方法中, 吸附法简单实用,具有进一步发展潜力。围绕烟气 Hg⁰高效吸附回收,已开发出多种类型烟气脱汞吸附剂材料。基于吸附剂的有效组成成分进行分类,系统阐述了各类吸附剂的制备方法、脱汞性能及吸附机理等,并进行了深入的分析对比。吸附剂种类共可分为4种类型:碳基及其改性材料、金属氧化物、金属硫化物和其他新型吸附剂。碳基及其改性吸附剂主要依赖大比表面积和多种官能团(C—O、C—S、C—Cl等)实现 Hg⁰的吸附,但其受限于材料耐热性差、官能团数量有限等因素的限制,在稳定性、吸附容量及循环使用性能等方面略显不足。金属氧化物吸附剂以铁和 锰氧化物为代表,形成了多种晶体结构,具有较宽的温区范围(室温至 250 °C)、较大的吸附容量以及稳定的热再生性能。金属硫化物吸附剂主要依靠构建的不饱和硫位点实现汞的高效吸附,具有高活性、宽温区和高吸附容量的优势,但热再生过程中高温易导致吸附活性位点破坏,循环使用性有待提升。基于对各种吸附剂的特点和研究现状的分析总结,阐明不同种类吸附剂的优势和不足,并提出相应的研究发展方向建议,旨在为吸附脱汞技术的材料创新、思路拓展和实际应用提供参考。

关键词: 烟气; Hg⁰ 脱除; 吸附法; 吸附剂类型; 脱汞性能 中图分类号: X701 **文献标识码:** A

Research Progress on Adsorbents for Mercury Removal from Flue Gas

MA Zhao, LIANG Xueqing, WANG Renzheng, XU Jingpan, HAO Runlong^{*} (Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and

Engineering, North China Electric Power University, Baoding 071003, China) **Abstract:** Mercury, as a widespread heavy metal pollutant, poses a serious threat to both human health and the ecosystem. It is of great significance to develop efficient mercury removal technology for decreasing elemental mercury (Hg^0) emissions from flue gas and controlling atmospheric mercury pollution. Adsorption has emerged as a simple, practical, and promising method for mercury removal, and various types of adsorbents for Hg^0 removal have been developed for the efficient adsorption and recovery of Hg^0 from flue gas. In this work, we systematically classified adsorbents based on their effective components, provided an in-depth examination of their characteristics of preparation methods, Hg^0 removal performance, and adsorption mechanisms. Furthermore, we conducted a thorough analysis and comparison of these materials across multiple dimensions, examining their performance and characteristics. Adsorbents for mercury removal can be broadly categorized into four main types: carbon-based and modified materials, metal oxides, metal sulfides, and other innovative materials.

通讯作者:郝润龙(1988—),男,河北邯郸人,教授,主要研究方向为大气污染控制工程。E-mail:runlong880805@163.com

Carbon-based and modified materials are particularly effective in removing Hg⁰ due to a large specific surface area and the presence of various functional groups, such as C-O, C-NO, C-S, C-Cl. However, these adsorbents suffer from limitations such as poor heat resistance, deficient functional groups, and as a result exhibit small adsorption capacities, poor stability, and recyclability. Metal oxide adsorbents are primarily composed of iron and manganese oxides, forming various crystal structures. These adsorbents stand out for their operational stability across a broad temperature range, from room temperature up to 250 °C, and their large adsorption capacities. Moreover, they benefit from the thermal stability, and maintain their effectiveness over multiple cycles. Metal sulfide adsorbents primarily rely on the abundant unsaturated S-sites to achieve efficient adsorption of Hg⁰. Their advantages include high activity, wide operational temperature range, and large adsorption capacities, but the high temperatures required for thermal regeneration can easily degrade their activity, resulting in challenges in recyclability. Based on the above analysis and summary of the characteristics and research progress on adsorbents, the respective advantages and disadvantages of different types of adsorbents are illustrated, and targeted development suggestions are proposed. This work provides novel ideas and valuable references for the development of new materials, as well as their potential and further application in mercury removal technology through adsorption.

Keywords: Flue gas; Hg⁰ removal; Adsorption; Types of adsorbents; Hg⁰ removal performance.

0 引 言

汞是毒性最强、分布最广的重金属之一,对人 类健康和生态环境构成了严重威胁^[1-2]。为有效防 控汞环境风险,2022年生态环境部制定了《关于 进一步加强重金属污染防控的意见》,对包括汞在 内的重金属实施排放总量控制^[3]。为落实《关于汞 的水俣公约》,我国于2017年已禁止开采新的原 生汞矿,并将于2032年全面禁止原生汞矿开采^[4], 这使得我国在汞污染排放控制方面面临巨大压 力。汞的人为排放源主要包括燃煤、金属冶炼、 氯碱工业、水泥生产、垃圾焚烧等在内的烟气和 废水排放^[5-6]。汞的多种存在形式(颗粒汞 Hg^P、氧 化汞 Hg²⁺和单质汞 Hg⁰)中,气态形式的单质汞是 最难去除的种类。因而,脱除烟气中 Hg⁰的技术 备受关注^[2,6]。

当前,烟气 Hg⁰ 脱除技术主要包括氧化法和 吸附法 2 大类^[7]。氧化法主要机制是将 Hg⁰ 直接 氧化为 Hg²⁺,而后使用吸收液进行吸收富集,具有 反应速率快、效率高等优势,但通常需要添加额外 的氧化剂或光/电/热等能量消耗,同时吸收富集的 Hg²⁺可能带来二次污染。吸附法主要利用各种吸 附剂以物理吸附和化学吸附的方式将 Hg⁰ 吸附固 定在固体材料中,因其操作简便、成本相对较低以 及较高的去除效率已经被广泛研究和应用,被认 为是最简单实用、有进一步发展潜力的方案^[2,6,8]。 研究人员针对吸附剂进行了深入研究,并发 展出了多种类型吸附剂。为展示、讨论近年来相 关研究进展,本文总结了烟气脱汞吸附剂的最新 研究成果,对吸附剂进行了系统地分类和讨论。 基于烟气脱汞吸附剂的有效组分进行分类(图1), 主要可以分为碳基材料、金属氧化物、金属硫化 物3种类型。此外,研究人员通过材料复合、新材 料开发等多种方法开发了其他类型吸附剂,进一 步提升脱汞性能、拓展吸附剂的种类。基于上述 分类,从制备方法、脱汞性能、主要作用机理等多

个方面对各种吸附剂进行了分析对比,阐述了不同种类吸附剂的特点,分析其优缺点,结合当前研究进展,提出相应的研究和应用建议,为含汞工业烟气综合治理技术发展提供有益参考。

1 碳基吸附剂与改性

1.1 碳基吸附剂

碳基吸附剂具有独特的物理化学特性,在环境治理中扮演着重要角色,主要包括活性炭、生物炭等主要由碳元素组成的吸附剂材料。这类材料主要是由煤、木材、石油沥青、坚果壳等富含碳的原料经炭化、活化形成的黑色多孔固体材料,具有较大的比表面积、丰富的孔隙结构、富含多种官能团等多种特点^[9-10]。巨大的比表面积和丰富的孔隙结构使得它们能够提供大量的吸附位点,从而有效捕获烟气中的单质汞。此外,这些碳基材料表面富含多种官能团,增强了材料的化学吸附能力。它们主要通过孔隙结构和表面官能团对单质汞进行吸附:气体分子可以在细孔、微孔等位置发生凝结使吸附能力提高;表面官能团主要包括羟基(—OH)、羰基(C=O)、羧基(—COOH)和内

酯基等。

基于碳基吸附剂发展而来的活性炭喷射脱汞 技术(ACI)是目前较为成熟且已有实际应用的燃 煤电厂脱汞技术,主要通过将活性炭直接喷射到 烟气流中,利用活性炭的吸附作用去除烟气中的 汞。然而其主要问题是成本较高、再生能耗大和 产生危险废物问题^[11-13],同时,纯活性炭的处理效 果并不理想,这促使研究人员需探索更有效的改 性方法以提高其性能。

LIU 团队^[14] 通过物理方法增加活性炭的比表 面积,进一步改善了活性炭对 Hg⁰ 的吸附能力,但 提升效果有限,还需要提高其表面官能团和活性 位点数量来进一步提升吸附能力。

1.2 改性碳基吸附剂

相较进一步增加比表面积,基于化学吸附的 理论基础,增加吸附剂表面官能团数目和种类可 以获得更好的吸附性能和更大的吸附容量(图 2)。 目前,已经发展出多种改性方式(如球磨法、浸渍 法、低温等离子体技术等),通过这些方法将 N、 S、Cl、Br、I等多种与汞亲和力强的元素引入碳材 料中,以获得更好的汞去除效果(图 3)。

图 3 改性碳基吸附剂脱汞机理

如 CHEN 等^[15] 通过化学处理方法,使用 HNO₃ 处理活性炭纤维布,使其表面活化,成功地在活性 炭表面产生了更多的氧官能团,从而提升了脱汞 效率,并且在多次电热再生后,仍能保持较高的吸 附性能(≈90%)。这种改性方法不仅提高了活性 炭的脱汞效率,还增强了其在实际应用中的经济 性和可持续性。

SHEN 等^[16]利用烟气中的 O₂和 NO 通过等 离子体方法对多孔碳进行活化处理,从而显著增 加 C=O、C-NO 和 C-NO₂等官能团,有效提升 了对 Hg⁰的吸附能力,其饱和吸附容量可达 12.3 mg/g。该研究表明,利用烟气中已有的组分进行 原位改性是一种经济且高效的方法。ZHANG 等^[17]利用 H₂S 通过等离子体技术改性了生物炭, 增加了生物炭表面的含硫(C-S)和含氧(C-O, C=O, —COOH) 官能团, 这些官能团的存在使 Hg⁰以 HgS 和 HgO 的形式吸附在材料上。IE 等^[18] 将活性炭置于 S⁰蒸汽和 Na₂S 溶液中浸渍处理, 获得了多种类型硫改性的活性炭吸附剂。实验结 果表明, 先进行 Na₂S 溶液浸渍再进行蒸汽 S⁰浸 渍可以获得最佳汞吸附能力, 最大饱和吸附容量 为 33.8 mg/g。

在汞去除研究中, 卤族元素在汞吸附、氧化过 程中均有较强的促进作用, 前人对此做了大量研 究, 以煤粉燃烧添加剂^[19]、氧化剂^[20-22]、改性助 剂^[23-25]和自由基前驱体^[7, 26-27]等多种方式参与烟 气汞的去除过程。其中, 利用改性助剂与碳材料 的反应, 可以将改性助剂应用到含碳材料的改性 中, 形成 C—X(Cl, Br, I)官能团, 从而极大地提升 吸附剂的脱汞能力。例如, 通过将活性炭与含氯、 溴或碘的化合物接触, 可以在活性炭表面引入相 应的卤素官能团, 从而提高其对汞的化学吸附能 力。由于卤素官能团可以促进汞的氧化, 并且更 容易将吸附的汞从吸附剂上解吸出来, 因此, 这种 改性方法不仅提升了吸附效率, 还可能降低吸附 剂的再生难度。

SHEN 等^[28-29]使用 NH₄Cl 对活性炭、生物炭 等多种材料进行改性, 成功在材料表面引入了 C—Cl 官能团, 将 Hg⁰吸附并氧化, 极大地改善了 Hg⁰的吸附性能。LUO 等^[24]采用低温等离子体方 法在生物炭上引入 Cl 活性位点, 这种方法不仅提 高了生物炭对 Hg⁰的吸附能力, 还促进了 Hg⁰的 化学转化。此外, 还利用表征技术对多种改性生 物炭材料进行对比分析, 详细说明了 Hg⁰在氯 改性碳材料上的转化过程, 揭示了氯官能团在 增强脱汞性能中的关键作用。此外, 许多金属氯 化物盐类也具有类似的改性效果, 例如 FeCl₃^[30]、 CeCl₃^[31]、CoCl₂^[32]等, 除了 C—Cl 官能团的作用, 金属阳离子在汞吸附过程中也起到了促进作用。

由于溴对 Hg⁰氧化效果更好,研究人员通过 多种方式实现了对碳材料的溴化改性:使用 TBBPA 对竹锯末进行水热法改性^[25]、使用 NH₄Br 溶液对碳材料进行浸渍^[33]、液溴与生物质机械球 磨^[23]等。这些方法在溴化改性中产生了类似 C—Cl 的官能团 C—Br,以化学吸附的方式实现 了 Hg⁰的高效去除,显示出比传统 C—Cl 官能团 更优异的脱汞效果。

碘具有比氯和溴更好的氧化活性,同理也可以被用于碳基吸附剂改性。例如, ZHANG 团队^[34]

采用碘蒸汽通过气相沉积法进行活性炭改性,成 功制备了碘改性活性炭。这种改性方法不仅提高 了活性炭的比表面积,还引入了碘官能团,增强了 其化学吸附能力。YUE 团队^[35]使用 KI 溶液浸渍 活性炭获得了碘改性活性炭,在吸附速率和吸附 效率上均获得了极大的提升。在碘改性活性炭 中,存在的 Γ和 I₂ 也会参与到汞的氧化过程中,在 该过程中,氧气对 Γ的氧化能够进一步促进 Hg⁰ 的去除。

RUNGNIM 等^[36]利用密度泛函理论对卤族元 素改性活性炭进行了系统的理论计算,详细探究 了 Hg⁰在卤族元素改性活性炭上的吸附和氧化反 应机制,通过比较形成 HgX 的活化能(HgI<HgBr <HgCl),证明了碘改性活性炭(I-AC)的汞吸附活 性最高,其次是溴改性活性炭(Br-AC)和氯改性活 性炭(Cl-AC),阐明了 Hg⁰在 X-AC 上的吸附氧化 反应过程,为进一步开发高性能碳基吸附剂提供 了重要理论支撑。

就上述碳基及其改性吸附剂的研究进一步分 析总结(表1)。碳基及其改性吸附剂主要通过提 升比表面积和增加其表面官能团数目和种类来进 一步提升脱汞性能和吸附容量,尤其后者发展出 了多种改性方法和具有丰富官能团的吸附剂。然 而,在吸附表现上仍然存在不足:通常适用的温度 区间窗口较窄(160 ℃以下);在吸附容量上难以 有较大的突破,一般在 5 mg/g 乃至 1 mg/g 以下。 此外,为了降低脱汞成本、防止汞的再释放和二次 污染,脱汞吸附剂的再生和汞回收也是一项重要 的研究内容,但上述研究基本未进行相关测试或 不具备循环再生能力。

2 金属氧化物吸附剂

金属氧化物通常具有多种价态,易于形成氧 化还原循环,并且这类吸附剂可以充分利用晶格 氧和吸附氧实现烟气汞的吸附和氧化,因而具有 高效的脱汞性能和良好的再生能力^[37],吸附容量 是大多数碳基吸附剂的数十倍(图 2)。其中,铁、 锰等多种金属的氧化物均具有良好的反应活性。

2.1 单金属氧化物

YANG 等^[38] 使用天然锰矿石在 100~250 °C 宽 温区实现了>90% 的脱汞效率,并通过理论计算证 明了 Mn_3O_4 是主要的活性组分(图 4)。DUAN 团 队^[39] 通过研究不同晶相的 MnO_2 对 Hg^0 吸附的影 响,发现 α- MnO_2 对晶格氧具有更好的保留作用,

材料	实验条件(浓度, 气速, 空速, 温度)	最高效率	吸附容量	穿透点	循环 再生	再生方法	参考 文献
SAC-800、EAC-800	80 μg/m ³ , 1 L/min, —, 160 °C	>90.0%	—	_	_	_	[14]
ACFC	260~300 μg/m ³ , 0.5 L/min, —, —	>90.0%	—	—	≥9	电热再生	[15]
O ₂ /NO-AC	$50 \; \mu g/m^3, \; 1 \; L/min, \; 76 \; 000 \; h^{-1}, \; 120 \; ^\circ \! C$	>90.0%	12.30 mg/g	100% 理论模型拟合	_	—	[16]
H ₂ S-生物炭	$20 \ \mu g/m^3$, 1 L/min, —, 30 °C	95.5%	—	—	_	—	[17]
Na ₂ S/S ⁰ -PAC	500 µg/m ³ , —, —, 150 °C	—	33.80 mg/g	100%	_	—	[18]
C ₆ WN ₅	$42 \ \mu g/m^3, \ 0.85 \ L/min, \ 65 \ 000\text{-}520 \ 000 \ h^{-1}, \ 120 \ ^\circ \!\! C$	97.3%	0.16 mg/g	100% 理论模型拟合	_	—	[28]
HCU-5	$60 \ \mu g/m^3, \ 0.85 \ L/min, \ 110 \ 000 \ h^{-1}, \ 120 \ ^\circ\! C$	约100.0%	1.08 mg/g	100% 理论模型拟合	_	—	[29]
竹子/BFR	$50~\mu\text{g/m}^3,~1.5$ L/min, —, 140 $^\circ\!\text{C}$	99.0%	15.11 μg/g	100% 理论模型拟合	_	—	[25]
S_8Br_5	$60 \ \mu g/m^3, \ 0.9 \ L/min, \ 21 \ 000 \ h^{-1}, \ 160 \ ^\circ\!C$	94.0%	0.95 mg/g	100% 理论模型拟合	—	—	[33]
AC-I ₂	50 µg/m ³ , 6~8 L/min, —, —	约100.0%	4.86 mg/g	100% 理论模型拟合	_	—	[34]
KI-AC	145 $\mu g/m^3,~0.6~L/min,~-,~80{\sim}160~\%$	约100.0%	_	_	_	_	[35]

表 1 碳基及改性吸附剂 Table 1 Carbon-based and modified materials

图 4 Hg⁰ 在不同铁和锰氧化物表面吸附能对比、PDOS 图和电子密度图^[38]

Fig. 4 Comparison of adsorption energy, PDOS and electron density of Hg⁰ on Fe/Mn-based oxides^[38]

因而具有更好的汞吸附和再生性能。XU等^[40]利用碳球作为载体制备了3D MnO₂,通过扩大表面

积和孔隙体积提升了脱汞性能,在汞吸附 600 min 后仍能达到 99% 以上的脱除效率,显示出其在长

期运行中的稳定性和高效率。

GUO 团队^[41] 制备了不同晶相的 Fe₂O₃, 均具 有 95% 以上的去除效率。在反应时, H₂S 会被吸 附在 Fe₂O₃ 表面形成活性硫位点, 这些位点与 Hg⁰发生吸附和氧化反应。LI 团队^[42] 制备了富含 碱位点和晶格氧的 U-CuO, 在 H₂S 的气氛下, 其吸 附容量可以达到 134.06 mg/g。这一成果不仅展示 了铜氧化物高效的脱汞性能, 也揭示了碱位点和 晶格氧具有增强吸附剂性能的作用。

2.2 多金属氧化物

多金属氧化物中的不同金属往往可以产生协 同效应,提高吸附剂稳定性和抗干扰能力,使得吸 附剂在高温、酸碱等恶劣环境下仍能保持性能,适 用于多变的工业烟气条件。此外,多金属氧化物 中的金属元素可以提供更多的活性位点,增加与 汞的接触机会,从而提高吸附能力,并且能够通过 不同金属元素的特定化学性质,对汞表现出更高 的选择性吸附。

YANG 等^[43] 通过在 Fe₃O₄ 尖晶石结构中掺入 锰元素,制得 Fe_{3-x}Mn_xO₄ 吸附剂并将其负载到活 性炭纤维上,在150~200 ℃ 的最佳反应温度下,达 到了 90% 以上的 Hg⁰去除效率,显示出优异的脱 汞性能。YANG 等^[44] 开发了一系列 Mn/γ-Fe₂O₃ 尖晶石吸附剂,在最佳条件下吸附容量>2.2 mg/g, 在吸附过程中锰离子、阳离子空位起到了重要作 用,这表明金属氧化物中的特定金属离子和缺陷 位点对提高吸附性能至关重要。LIU 团队^[45] 采用 低温溶胶-凝胶自燃法制备了 AMn₂O₄(A= Cu, Ni 和 Zn)尖晶石吸附剂,在 H₂S 气氛条件下吸附剂 表现出 95% 的去除效率,以 50% 汞浓度为穿透 点,其吸附容量为 25.6 mg/g。XU 等^[46] 通过溶胶-凝胶法制备了 LaMnO₃ 钙钛矿型吸附剂,在最佳 条件下,以 50% 汞浓度为穿透点,其吸附容量为 6.22 mg/g。HAO 团队^[47] 通过尿素和非化学计量 比共调控制备了 Mn 基钙钛矿(2U-La_{0.8}MnO₃),在 宽温区范围(40~250℃)表现出近 100% 的 Hg⁰去 除率,其饱和吸附量可达 23.86 mg/g。通过表征和 理论计算阐明了其反应路径(图 5):路易斯酸是 Hg⁰吸附的主要位点,随后 Hg 与吸附氧形成 HgO。

在金属氧化物的研究中,研究人员以铁和锰 元素的氧化物为基础,制备了多种掺有不同其他 金属元素、不同晶体类型的高活性吸附剂(表 2)。 相比上述碳基及改性吸附剂,具有更宽的温区范 围(室温~250 ℃),能适应多种需求,拓展使用场 景。此外,在吸附容量上也有了数十倍的提升,吸

材料	实验条件(浓度, 气速, 空速, 温度)	最高效率	吸附容量	穿透点	循环 再生	再生方法	参考 文献	
Mn-Ore	65 μg/m ³ , 1 L/min, —, 100~250 °C	>90.0%	53.57 mg/g	100% 理论 模型拟合	≥5	热再生	[38]	
α -MnO ₂	235.6 $\mu g/m^3, \ 600 \ L/(h \cdot g) , \ 100{\sim}250 \ \ {\rm C}$	>99.0%	128.00 µg/g	1 h	≥14	热再生	[39]	
3D MnO ₂ /CS	—, 0.5 L/min, —, 150 °C	>99.0%	—	—	—	—	[<mark>40</mark>]	
U-CuO	50 μ g/m ³ , 1.0 L/min,, 30 °C	98.2%	134.06 mg/g	60%	≥10	热再生	[42]	
Fe _{3-x} Mn _x O ₄ /CNF	85 μ g/m ³ , 1.2 L/min,, 150~200 °C	>90.0%	—	—	≥4	热再生	[43]	
Mn/γ - Fe_2O_3	$85~\mu\text{g/m}^3,~0.2~\text{L/min},~1.2\times10^6~h^{-1},~100{\sim}200~^\circ\text{C}$	—	>2.20 mg/g	10 h	_	H2-热再生	[44]	
AMn ₂ O ₄ (A=Cu, Ni和Zn)	50 μ g/m ³ , 1 L/min, 50 000 h ⁻¹ , 200 °C	>95.0%	25.60 mg/g	50%	_	350 ℃热再生	[45]	
LaMnO ₃	500 $\mu g/m^3,~0.5~L/min,~478~000~h^{-1},~150~{\rm ^{\circ}C}$	>85.0%	6.22 mg/g	50%	≥5	热再生	[<mark>46</mark>]	
2U-La _{0.8} MnO ₃	270 μ g/m ³ , 1.0 L/min, 153 000 h ⁻¹ , 40~250 °C	约100.0%	23.86 mg/g	100% 理论 模型拟合	_	_	[47]	

表 2 金属氧化物吸附剂 Table 2 Metal oxide adsorbents

附容量突破 20 mg/g,上述提及的研究中最高的吸 附容量可达 134 mg/g。由于吸附容量的提升,吸 附剂可以高效的脱汞性能长时间稳定运行。更重 要的是,金属氧化物吸附剂普遍具有优异的热再 生性能,以上特点对于脱汞系统的稳定、低成本运 行和汞回收资源化利用具有重要意义。

3 金属硫化物吸附剂

汞是一种极强的亲硫元素,在自然界中,汞常 常与硫元素结合,并以稳定的 HgS 的形态存在于 各种矿物中^[48]。HgS 在自然环境中不易被生物利 用或迁移,这降低了汞的生物可利用性和毒性。 因此,近年来金属硫化物类型的吸附剂受到了广 泛关注,研究人员做了大量相关研究。研究主要 集中在过渡金属的硫化物上,例如铁、铜、锌的硫 化物等,它们具有丰富的硫活性位点,能够有效地 与汞发生反应,具有较大的吸附容量(图 2)。金属 硫化物脱除气态 Hg⁰主要遵循 Mars-Maessen 机 理: Hg⁰首先被吸附在表面活性位点,随后与金属 阳离子或硫活性位点发生反应,实现 Hg⁰的吸附 和氧化(图 6)。

3.1 单金属硫化物

通过对各种金属硫化物的研究和筛选,研究 人员筛选出诸如 ZnS、FeS_x 的硫化物。这些都可 以从天然矿物中提取获得,储量大,因而也相对廉 价^[50]。此外,这些硫化物的表面活性位点较多,热 稳定性好,使得汞能够被稳定高效地捕获,由此金 属硫化物有望成为传统吸附剂的替代品。然而, 这些硫化物天然矿物受限于其比表面积等因素, 吸附容量较小,仅与活性炭相似,并且大多处在实 验室研究阶段,与商业应用仍有一定距离。因此, 如何提升这类硫化物的吸附容量成为重点研究课题之一。

为了提高这些硫化物的吸附容量,研究人员 探索了多种方法。一种方法是通过纳米技术或特 定的化学处理手段来增加硫化物的比表面积,从 而提供更多的吸附位点。李海龙团队对硫化物吸 附剂进行了大量的研究,制备了 ZnS^[49]、CuS^[51]、 CoS^[52]、S/FeS^{53]}等一系列吸附剂。此外,还提出 了一种原位刻蚀的方法,通过在材料表面引入更 多的活性位点和增加比表面积,极大地提升了吸 附剂的吸附容量,对ZnS、CoS、NiS等多种硫化物 吸附剂的汞去除效果都有显著的提升,最高可以 将吸附容量提升100倍以上^[52]。研究中还将硫化 物负载到其他载体上以大幅度提升其吸附性能, 不仅进一步增加了其比表面积,而且也可以减少 纳米颗粒团聚,暴露更多活性位点,提升其脱汞活 性。REDDY 等^[54] 以多孔碳作为载体, 研究了 C/CuS、C/ZnS 和 C/FeS 对汞的吸附,发现通过这 一方式能够使得硫化物分散更加均匀、汞的扩散 阻力更小、比表面积更大,这有利于脱汞效率的提 升,其中 C/CuS 性能最佳,吸附容量可达 23 mg/g。 LIU团队^[55]开发了一种 Co₉S₈-PC 吸附剂,吸附容 量可达 43.18 mg/g, 该吸附剂通过将 Co₉S₈ 与 PC 结合,解决了 nano-Co₉S₈因易于聚集而不满足实 际脱汞需要的限制。

3.2 多金属硫化物

相比于单金属硫化物,多金属硫化物由于不 同金属阳离子的掺杂,能够表现出协同去除作用: 一方面,多种金属离子可通过互补吸附机制(如物 理/化学吸附结合)提供丰富活性位点,增强接触, 显著提升汞吸附及去除效率;另一方面,多元金属 组分可增强抗气体干扰能力,在复杂烟气环境中 保持高选择性,具有重要实际应用价值。

ZHAO 等^[56] 筛选了不同种类的单金属硫化物 和二元金属硫化物, 对它们的汞吸附性能进行了 测试和比较, 发现二元硫化物具有更高的脱汞效 率, 尤其 Co-Mo-S 和 Cu-Mo-S 表现出优异的性能, 在较低温度条件下对汞的脱除效率近乎 100%, 这一发现对于低温脱汞技术的开发具有重要意 义。基于上述研究成果, 研究者进一步合成了 CoMoS/γ-Al₂O₃ 材料, 在 S、O、Co、Mo 多种元素 的协同作用下, 50 ℃ 时达到了接近 100% 的 Hg⁰ 脱除效率^[57], 展示了多元素协同作用在提高脱汞 效 率方面的 潜力。WANG 等^[58] 开发出一种 FeMoS_{*}/TiO₂吸附剂,由于 Fe 和 Mo 具有协同效 应,吸附剂脱汞效果比 2 种单金属硫化物的吸附 性能之和更大。LI 团队^[59]制备了 CuS/ZnS 二元 硫化物吸附剂,研究发现通过调整比例可以实现 在宽温区对 Hg⁰的高效吸附。这种比例调整策略 为优化二元金属硫化物吸附剂的性能提供了一种 有效的方法。

尽管硫和氧属于同一主族元素,但与金属氧 化物不同的是,金属硫化物主要依靠构建的不饱 和硫位点实现汞的高效吸附。此外,金属硫化物 的金属阳离子成分更加丰富,不再局限于以铁锰 元素为基础,例如发展了锌、铜、钴、钼等金属硫 化物吸附剂。在脱汞表现上,金属硫化物也具有 高活性、宽温区和高吸附容量的优势(表 3)。由 于硫化物对汞的高效吸附主要依赖于不饱和硫位 点,而再生过程中的高温容易破坏这些活性位点, 这给实际应用带来了巨大挑战。

Table 5 Metal sunde adsorbents									
材料	实验条件(浓度, 气速, 空速, 温度)	最高效率	吸附容量	穿透点	循环 再生	再生方法	参考 文献		
nano-ZnS	65 μg/m ³ , 1.0 L/min, —, 140~260 °C	>90%	497.84 μg/g	50%	_		[49]		
nano-CuS	90 μg/m ³ , 1.0 L/min, —, 75 °C	>99%	122.40 mg/g	100% 理论 模型拟合	_	_	[51]		
ZnS	$100 \ \mu g/m^3$, $1.0 \ L/min$, —, $100 \ ^{\circ}C$	>99%	53.83 mg/g	50%	_	—	[52]		
S/FeS2	$68~\mu\text{g/m}^3,~1.0~\text{L/min},~,~80~^\circ\text{C}$	>99%	2.73 mg/g	50%	_	_	[53]		
C/CuS	—, —, —, 100 ℃	_	23.00 mg/g	_	—	—	[54]		
Co ₉ S ₈ -PC	210 μ g/m ³ , 0.6 L/min, —, 100 °C	>90%	43.18 mg/g	100% 理论 模型拟合	≥6	250 ℃热再生	[55]		
CoMoS/γ-Al ₂ O ₃	—, 1.5 L/min, 45 000 cm ³ /(g·h), 25~450 °C	100% (50 °C)	18.95 mg/g	100% 理论 模型拟合	_	—	[57]		
FeMoS _x /TiO ₂	4 300 $\mu g/m^3,~0.3~L/min,~1~200~000~cm^3/(g\cdot h),~40{\sim}100~^\circ\!C$	>90%	41.80 mg/g	—	≥5	450 ℃热再生	[58]		

表 3 金属硫化物吸附剂 Table 3 Metal sulfide adsorbent

4 其他类型吸附剂

除了上述几种物质组成相对单一的吸附剂, 研究人员还对多种复合类型的脱汞吸附剂材料进 行了研究,以期通过材料的复合效应获得更优异 的脱汞性能(表 4)。例如,飞灰及其改性吸附剂的 主要组成成分为氧化物和未燃尽碳,可以归类为 氧化物和碳基材料复合形成的混合物吸附剂。在 脱汞时,这些成分中起到主要作用的是未燃尽 碳。此外, Fe₂O₃、TiO₂和 CaO 等金属氧化物对汞 的吸附有微弱的作用。由于未改性的飞灰对汞的 吸附效率较低,较多学者对其进行改性研究来提 高吸附效率。田园梦等^[60]采用 5% NaCl 溶液浸 渍改性的飞灰,脱汞效率可达 92.6%,其饱和吸附 量达到 930 ng/g, 使用寿命长达 60 h。ZHANG 团 队^[61]使用 HBr 对飞灰进行改性,其脱汞效率从改 性前的 8.1% 提升到了 98.4%, 大幅度提升了脱汞 效率。

学者还将金属硫化物、金属氢氧化物、氧化物、非金属元素等相结合,获得了具有优异吸附性能的脱汞吸附剂。XU等制备了 $[MoS_4]^2$ /CoFe-LDH^[62]、ZnO@CuS^[63]等多种复合材料吸附剂,其中 $[MoS_4]^2$ /CoFe-LDH 复合材料吸附剂在低浓度和高浓度 SO₂下均具有出色的 Hg⁰去除性能,这突出表明了这种材料在 S-Hg 混合烟气净化中的潜力,汞最大容量高达 16.39 mg/g。ZnO@CuS 具有更大的吸附容量,在最佳条件下,饱和吸附容量可达 60.53 mg/g^[63]。LIU 等^[64]将非金属 Se 与 Fe₂S₃进行掺杂,获得了脱汞性能远高于传统 Fe₂S₃的 FeS_xSe_y, KeS₂Se_y微粒因有优异的 Hg⁰捕集性能、较宽的工作温度范围和出色的回收利用特性,有望成为工业应用中 Hg⁰捕集的吸附剂。

此外,目前还发展出一些其他类型的吸附剂 材料(表 4)。CAO 等^[65]制备了以单质银为主要活 性位点的 Ag-SBA-15 纳米材料,该吸附剂在高达 200 ℃ 的温度下对 Hg⁰ 有近乎 100% 的吸附性能;

材料	实验条件(浓度, 气速, 空速, 温度)	最高效率	吸附容量	穿透点	循环 再生	再生方法	参考 文献
NaCl/FA	$25 \ \mu g/m^3$, 1.0 L/min, 153 000 h ⁻¹ , 40~250 °C	>90.0%	0.93 μg/g	100%	_	_	[60]
$[MoS_4]^2$ -/CoFe-LDH	$350 \ \mu g/m^3$, 0.5 L/min, —, 50~150 °C	>95.0%	16.39 mg/g	3 000~3 250 min	_	—	[<mark>62</mark>]
ZnO@CuS	1 200 $\mu\text{g/m}^3,~0.5$ L/min, —, 75 $^\circ\!\mathrm{C}$	>90.0%	60.53 mg/g	6 000 min	_	—	[63]
$FeS_{1.32}Se_{0.11}$	$130 \ \mu g/m^3$, 0.6 L/min, 230 000 h ⁻¹ , 80 °C	>90.0%	20.22 mg/g	_	_	_	[<mark>64</mark>]
Ag-SBA-15 纳米复合材料	$125 \ \mu g/m^3, \ 1 \ L/min, \ 260 \ 000 \ h^{-1}, \ 150 \ ^\circ\!C$	>99.0%	13.20 mg/g	1%	≥5	300 ℃热再生	[65]
单点Mn	$1\ 200\ \mu\text{g/m}^3,\ 0.5\ \text{L/min},\ 25{\sim}550\ ^\circ\!\text{C}$	>97.0% (<200 ℃)	>13.00 mg/g	—	_	—	[<mark>66</mark>]
Cu ₂ Se/PUS	$,, 7 200 000 h^{-1}, 30~120 \degree C,$	>99.0%	25.90 mg/g	100% 静态吸附	_	—	[67]
Cl-PPy@MWCNTs	240 $\mu g/m^3, ~1 ~L/min, ~200~000 ~h^{-1}, ~25{\sim}100~^\circ\!\mathrm{C}$	97.3%	3.87 mg/g	约20%	≥5	酸性氯化钠浸渍	[68]
Cl-PANI ⁺ @MWCNTs	240 μ g/m ³ , 1 L/min, 200 000 h ⁻¹ , 25~100 °C	98.5%	7.43 mg/g	10%	≥5	酸性氯化钠浸渍	[<mark>69</mark>]

表 4 其他类型吸附剂 Table 4 Other adsorbents

以1% 汞浓度为穿透点,吸附容量仍然可达13.2 mg/g。即使在复杂的模拟烟气流中,仍具有高达 91.6%的 Hg⁰去除效率。YAN 团队^[60] 通过配位 的方式制备了单点锰吸附剂,在 200 ℃ 下实现了 高Hg⁰去除效率和超过13 mg/g Hg⁰的吸附容 量。LI团队^[66,70]制备了一系列硒化物类吸附剂, 其中 CuFeSe, 的吸附率高达 900.71 μg/(g·min)⁻¹。 Cu₂Se/PUS 表现出最大的吸附容量为 25.90 mg/g, 吸 附速率高达1275.84 µg/(g·min)⁻¹。HAO 团队^[2, 68-69] 开发了一系列卤素掺杂含氮共轭聚合物吸附剂, 在 200 000 h⁻¹ 的高空速下去除率达 98.5%, 以 10% 汞浓度为穿透点,吸附容量可达 7.43 mg/g,并根据 该材料的特性和脱汞机理,提出了一种室温条件 下的浸渍法再生工艺,实现汞的回收和吸附剂的 再生。这些吸附剂对 Hg⁰均具有优异的去除能 力,进一步扩展了脱汞吸附剂的种类。

5 结论与展望

目前,我国燃煤烟气汞排放限值远高于国外 燃煤电厂,受限大气汞的监测技术发展不完善,在 大气汞排放履约方面差距较大。吸附法作为一种 较为成熟、工艺简单有效的技术,在汞去除方面具 有良好的应用前景。本文依照有效成分对采用的 吸附剂进行了分类、分析和讨论,详细总结了不同 类型吸附剂的研究进展,从吸附性能、吸附机理等 多个方面进行了阐述,总结和建议如下。 (1)碳基吸附剂具有相对简单的改性工艺,但 受限于官能团数量少、活性低,在吸附容量、循环 使用能力、环境适应性等方面略显不足。可以利 用机械球磨、化学接枝等方式增加官能团的种类 和数量,利用光、电等媒介增强汞去除效果。

(2)金属氧化物和金属硫化物种类繁多,充分 利用了合成材料的优势,在吸附容量、循环使用、 抗硫性、抗水性上表现优异,然而原料的高成本和 合成条件要求高等问题限制了其应用。可以充分 利用天然矿物、尾矿固废等降低原料成本,进一步 简化合成、回收方法,以实现规模化制备和应用。

(3)可以进一步探索并发展出更多不同种类 吸附剂,并根据材料特性将不同类型吸附剂进行 结合,形成有协同效应的复合材料,这对于开发高 性能吸附剂和创新汞吸附和回收方法具有重要 意义。

(4)相较于吸附剂脱汞性能的研究,吸附剂的 再生和汞回收还有待进一步发展。目前吸附剂再 生主要以热解吸的方式将汞重新以气态形式富 集。此外也有研究人员采用了电热、溶液浸渍等 方式实现了吸附剂再生和汞的高浓度富集。在再 生方式上需要进一步创新汞回收方法,实现以高 价值资源形式回收。

参考文献 (References):

 LAMBORG C H, HAMMERSCHMIDT C R, BOWMAN K L, et al. A global ocean inventory of anthropogenic mercury based on water column measurements[J]. Nature, 2014, 512(7512): 65-68.

- [2] MA Zhao, QIU Zeyu, LI Hongming, et al. Multimedia mercury recovery from coal-fired power plants utilizing Ncontaining conjugated polymer functionalized fly ash[J]. Environmental Science & Technology, 2024, 58(5): 2574-2583.
- [3] 《关于进一步加强重金属污染防控的意见》发布 [J]. 中国 有色金属, 2022(7): 24.
 Opinions on further strengthening the prevention and control of heavy metal pollution released[J]. China Nonferrous Metals, 2022(7): 24.
- [4] 《关于汞的水俣公约》正式生效 [J]. 中国有色金属, 2017(17): 23.
 Minamata convention on mercury officially enters into force[J]. China Nonferrous Metals, 2017(17): 23.
- [5] WANG Jing, DENG Baolin, CHEN Huan, et al. Removal of aqueous Hg(II) by polyaniline: Sorption characteristics and mechanisms[J]. Environmental Science & Technology, 2009, 43(14): 5223-5228.
- [6] YANG Jianping, ZHU Penglin, MENG Fanyue, et al. Charge distribution modulation and morphology controlling of copper selenide for an enhanced elemental mercury adsorption activity in flue gas[J]. Chemical Engineering Journal, 2022, 442: 136145.
- [7] HAO Runlong, LI Chu, WANG Zheng, et al. Removal of gaseous elemental mercury using thermally catalytic chloritepersulfate complex[J]. Chemical Engineering Journal, 2020, 391: 123508.
- [8] XU Haomiao, QU Zan, ZONG Chenxi, et al. MnO_x/graphene for the catalytic oxidation and adsorption of elemental mercury[J]. Environmental Science & Technology, 2015, 49(11): 6823-6830.
- [9] RAKIĆ V, RAC V, KRMAR M, et al. The adsorption of pharmaceutically active compounds from aqueous solutions onto activated carbons[J]. Journal of Hazardous Materials, 2015, 282: 141-149.
- [10] WANG Xiaohong, CHENG Hairong, YE Guangzheng, et al. Key factors and primary modification methods of activated carbon and their application in adsorption of carbonbased gases: A review[J]. Chemosphere, 2022, 287: 131995.
- [11] 倪鹏,王先泓,黄钰涵,等.活性炭类和磁性金属类吸附 剂喷射脱汞技术应用对比及最新进展[J].化工进展, 2025,44(1):513-524.
 NI Peng, WANG Xianhong, HUANG Yuhan, et al. Latest progress and comparison of the injection demercuration application of two types of adsorbents[J]. Chemical Industry and Engineering Progress, 2025, 44(1): 513-524.
- [12] WANG Yinyin, SHEN Boxiong, HE Chuan, et al. Simultaneous removal of NO and Hg⁰ from flue gas over Mn–Ce/Ti-PILCs[J]. Environmental Science & Technology,

2015, 49(15): 9355-9363.

- [13] ZHANG Yongsheng, MEI Dongqian, WANG Tao, et al. *In-situ* capture of mercury in coal-fired power plants using high surface energy fly ash[J]. Environmental Science & Technology, 2019, 53(13): 7913-7920.
- [14] LIU Ziyang, ADEWUYI Y G, SHI Shuo, et al. Removal of gaseous Hg⁰ using novel seaweed biomass-based activated carbon[J]. Chemical Engineering Journal, 2019, 366: 41-49.
- [15] CHEN Bingei, TSAI C Y, PAN Shuyuan, et al. Sustainable recovery of gaseous mercury by adsorption and electrothermal desorption using activated carbon fiber cloth[J]. Environmental Science & Technology, 2020, 54(3): 1857-1866.
- [16] SHEN Fenghua, LIU Jing, WU Dawei, et al. Development of O₂ and NO Co-doped porous carbon as a high-capacity mercury sorbent[J]. Environmental Science & Technology, 2019, 53(3): 1725-1731.
- [17] ZHANG Huicong, WANG Tao, SUI Zifeng, et al. Enhanced mercury removal by transplanting sulfur-containing functional groups to biochar through plasma[J]. Fuel, 2019, 253: 703-712.
- [18] IE I R, HUNG C H, JEN Y S, et al. Adsorption of vaporphase elemental mercury (Hg⁰) and mercury chloride (HgCl₂) with innovative composite activated carbons impregnated with Na₂S and S⁰ in different sequences[J]. Chemical Engineering Journal, 2013, 229: 469-476.
- [19] ZHAO Shilin, DUAN Yufeng, ZHOU Qiang, et al. Effects of NH₄Br additive on mercury transformation and removal during CFB coal combustion[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(2): 391-398.
- [20] QU Zan, YAN Naiqiang, LIU Ping, et al. Bromine chloride as an oxidant to improve elemental mercury removal from coal-fired flue gas[J]. Environmental Science & Technology, 2009, 43(22): 8610-8615.
- [21] CHI Yao, YAN Naiqiang, QU Zan, et al. The performance of iodine on the removal of elemental mercury from the simulated coal-fired flue gas[J]. Journal of Hazardous Materials, 2009, 166(2-3): 776-781.
- [22] QU Zan, YAN Naiqiang, LIU Ping, et al. The role of iodine monochloride for the oxidation of elemental mercury[J]. Journal of Hazardous Materials, 2010, 183(1-3): 132-137.
- [23] BISSON T M, XU Zhenghe, GUPTA R, et al. Chemical-mechanical bromination of biomass ash for mercury removal from flue gases[J]. Fuel, 2013, 108: 54-59.
- [24] LUO Jinjing, JIN Mingchang, YE Lurong, et al. Removal of gaseous elemental mercury by hydrogen chloride non-thermal plasma modified biochar[J]. Journal of Hazardous Materials, 2019, 377: 132-141.
- [25] SUN Lushi, CHEN Tao, BA Cailing, et al. Preparation of

sorbents derived from bamboo and bromine flame retardant for elemental mercury removal[J]. Journal of Hazardous Materials, 2021, 410: 124583.

- [26] HAO Runlong, DONG Xinhong, WANG Zheng, et al. Elemental mercury removal by a method of ultraviolet-heat synergistically catalysis of H₂O₂-halide complex[J]. Environmental Science & Technology, 2019, 53(14): 8324-8332.
- [27] HAO Runlong, WANG Zheng, TANG Chen, et al. Reaction behavior and cost-effectiveness of halogen radicals in Hg⁰ removal: Performance, kinetics, and mechanism[J]. ACS ES& T Engineering, 2021, 1(1): 66-75.
- [28] LI Guoliang, SHEN Boxiong, LI Fukuan, et al. Elemental mercury removal using biochar pyrolyzed from municipal solid waste[J]. Fuel Processing Technology, 2015, 133: 43-50.
- [29] SHEN Boxiong, TIAN Linghui, LI Fukuan, et al. Elemental mercury removal by the modified bio-char from waste tea[J]. Fuel, 2017, 187: 189-196.
- [30] TAN Zengqiang, NIU Guoping, CHEN Xiaowen. Removal of elemental mercury by modified bamboo carbon[J]. Chinese Journal of Chemical Engineering, 2015, 23(11): 1875-1880.
- [31] TAO Shasha, LI Caiting, FAN Xiaopeng, et al. Activated coke impregnated with cerium chloride used for elemental mercury removal from simulated flue gas[J]. Chemical Engineering Journal, 2012, 210: 547-556.
- [32] SHEN Zhemin, MA Jing, MEI Zhijian, et al. Metal chlorides loaded on activated carbon to capture elemental mercury[J]. Journal of Environmental Sciences, 2010, 22(11): 1814-1819.
- [33] YANG Wei, LIU Ziyang, XU Wen, et al. Removal of elemental mercury from flue gas using sargassum chars modified by NH₄Br reagent[J]. Fuel, 2018, 214: 196-206.
- [34] ZHONG Longchun, LI Wenhan, ZHANG Yongsheng, et al. Kinetic studies of mercury adsorption in activated carbon modified by iodine steam vapor deposition method[J]. Fuel, 2017, 188: 343-351.
- [35] TONG Li, YUE Tao, ZUO Penglai, et al. Effect of characteristics of KI-impregnated activated carbon and flue gas components on Hg⁰ removal[J]. Fuel, 2017, 197: 1-7.
- [36] RUNGNIM C, PROMARAK V, HANNONGBUA S, et al. Complete reaction mechanisms of mercury oxidation on halogenated activated carbon[J]. Journal of Hazardous Materials, 2016, 310: 253-260.
- [37] YANG Jianping, XU Hong, ZHAO Yongchun, et al. Mercury removal from flue gas by noncarbon sorbents[J]. Energy & Fuels, 2021, 35(5): 3581-3610.
- [38] YANG Yingju, MIAO Sen, LIU Jing, et al. Cost-effective manganese ore sorbent for elemental mercury removal from flue gas[J]. Environmental Science & Technology, 2019, 53(16): 9957-9965.
- [39] YAO Ting, DUAN Yufeng, BISSON T M, et al. Inherent

thermal regeneration performance of different MnO₂ crystallographic structures for mercury removal[J]. Journal of Hazardous Materials, 2019, 374: 267-275.

- [40] XU Haomiao, JIA Jinping, GUO Yongfu, et al. Design of 3D MnO₂/Carbon sphere composite for the catalytic oxidation and adsorption of elemental mercury[J]. Journal of Hazardous Materials, 2018, 342: 69-76.
- [41] LIU Ting, XUE Lucheng, GUO Xin. Study of Hg⁰ removal characteristics on Fe₂O₃ with H₂S[J]. Fuel, 2015, 160: 189-195.
- [42] ZHENG Wei, YANG Wanliang, CHEN Jiefeng, et al. H₂S induced *in situ* formation of recyclable metal sulfide-based sorbent for elemental mercury sequestration in natural gas[J]. Chemical Engineering Journal, 2024, 497: 154699.
- [43] YANG Jianping, ZHAO Yongchun, LIANG Shaofeng, et al. Magnetic iron-manganese binary oxide supported on carbon nanofiber (Fe_{3-x}Mn_xO₄/CNF) for efficient removal of Hg0 from coal combustion flue gas[J]. Chemical Engineering Journal, 2018, 334: 216-224.
- [44] YANG Shijian, GUO Yongfu, YAN Naiqiang, et al. Capture of gaseous elemental mercury from flue gas using a magnetic and sulfur poisoning resistant sorbent Mn/γ-Fe₂O₃ at lower temperatures[J]. Journal of Hazardous Materials, 2011, 186(1): 508-515.
- [45] WANG Zhen, LIU Jing, YANG Yingju, et al. AMn₂O₄ (A=Cu, Ni and Zn) sorbents coupling high adsorption and regeneration performance for elemental mercury removal from syngas[J]. Journal of Hazardous Materials, 2020, 388: 121738.
- [46] XU Haomiao, QU Zan, ZONG Chenxi, et al. Catalytic oxidation and adsorption of Hg0 over low-temperature NH₃-SCR LaMnO₃ perovskite oxide from flue gas[J]. Applied Catalysis B: Environmental, 2016, 186: 30-40.
- [47] HAO Runlong, QIAN Zhen, ZUO Xiaomeng, et al. Urea–nonstoichiometric co-modulated LaMnO₃ for ultra-high gaseous Hg⁰ uptake across a broad temperature range[J]. Journal of Materials Chemistry A, 2024, 12(33) : 22140-22150.
- [48] MANCEAU A, MERKULOVA M, MURDZEK M, et al. Chemical forms of mercury in pyrite: Implications for predicting mercury releases in acid mine drainage settings[J]. Environmental Science & Technology, 2018, 52(18): 10286-10296.
- [49] LI Hailong, ZHU Lei, WANG Jun, et al. Development of nano-sulfide sorbent for efficient removal of elemental mercury from coal combustion fuel gas[J]. Environmental Science & Technology, 2016, 50(17): 9551-9557.
- [50] LIAO Yong, XU Haomiao, LIU Wei, et al. One step interface activation of ZnS using cupric ions for mercury recovery from nonferrous smelting flue gas[J]. Environmental Science & Technology, 2019, 53(8): 4511-4518.
- [51] YANG Zequn, LI Hailong, FENG Shihao, et al. Multi-

form sulfur adsorption centers and copper-terminated active sites of nano-CuS for efficient elemental mercury capture from coal combustion flue gas[J]. Langmuir, 2018, 34(30): 8739-8749.

- [52] LI Hailong, ZHENG Jiaoqin, ZHENG Wei, et al. *In situ* acid etching boosts mercury accommodation capacities of transition metal sulfides[J]. Nature Communications, 2023, 14(1): 1395.
- [53] LI Hailong, ZHU Wenbing, YANG Jianping, et al. Sulfur abundant S/FeS₂ for efficient removal of mercury from coalfired power plants[J]. Fuel, 2018, 232: 476-484.
- [54] REDDY K S K, AL SHOAIBI A, SRINIVASAKANNAN C. Mercury removal using metal sulfide porous carbon complex[J]. Process Safety and Environmental Protection, 2018, 114: 153-158.
- [55] YANG Shu, LIU Cao, WANG Pingshan, et al. Co9S8 nanoparticles-embedded porous carbon: A highly efficient sorbent for mercury capture from nonferrous smelting flue gas[J]. Journal of Hazardous Materials, 2021, 412: 124970.
- [56] ZHAO Haitao, FAN Hua, YANG Gang, et al. Integrated dynamic and steady state method and its application on the screening of MoS₂ nanosheet-containing adsorbents for Hg⁰ capture[J]. Energy & Fuels, 2018, 32(4): 5338-5344.
- [57] ZHAO Haitao, YANG Gang, GAO Xiang, et al. Hg(0) capture over CoMoS/γ-Al₂O₃ with MoS₂ nanosheets at low temperatures[J]. Environmental Science & Technology, 2016, 50(2): 1056-1064.
- [58] WANG Chang, ZHANG Xufan, MEI Jian, et al. Novel synergistic effect of Fe and Mo in $FeMoS_x/TiO_2$ for recovering high concentrations of gaseous Hg^0 from smelting flue gas: Reaction mechanism and kinetics[J]. Environmental Science & Technology, 2020, 54(1): 586-594.
- [59] WANG Shengcai, YANG Zequn, ZHAO Jiexia, et al. Binary mineral sulfides sorbent with wide temperature range for rapid elemental mercury uptake from coal combustion flue gas[J]. Environmental Technology, 2021, 42(1): 160-169.
- [60] 田园梦,刘清才,孔明,等.改性粉煤灰基脱汞吸附剂制 备及性能分析 [J].环境工程学报,2017,11(8):4751-4756.
 TIAN Yuanmeng, LIU Qingcai, KONG Ming, et al. Modification and property analysis of fly ash based adsorbent for mercury[J]. Chinese Journal of Environmental Engineering, 2017, 11(8):4751-4756.

- [61] ZHANG Yongsheng, DUAN Wei, LIU Zhao, et al. Effects of modified fly ash on mercury adsorption ability in an entrained-flow reactor[J]. Fuel, 2014, 128: 274-280.
- [62] XU Haomiao, YUAN Yong, LIAO Yong, et al. [MoS₄]²⁻ cluster bridges in Co-Fe layered double hydroxides for mercury uptake from S-Hg mixed flue gas[J]. Environmental Science & Technology, 2017, 51(17): 10109-10116.
- [63] HONG Qinyuan, XU Haomiao, LI Jiaxing, et al. Shellthickness-induced spontaneous inward migration of mercury in porous ZnO@CuS for gaseous mercury immobilization[J]. Chemical Engineering Journal, 2021, 420: 127592.
- [64] LIU Zhilou, LI Ziliang, XIE Xiaofeng, et al. Development of recyclable iron sulfide/selenide microparticles with high performance for elemental mercury capture from smelting flue gas over a wide temperature range[J]. Environmental Science & Technology, 2020, 54(1): 604-612.
- [65] CAO Tiantian, LI Zhen, XIONG Yong, et al. Silica-silver nanocomposites as regenerable sorbents for Hg⁰ removal from flue gases[J]. Environmental Science & Technology, 2017, 51(20): 11909-11917.
- [66] LI Jiaxing, XU Haomiao, HUANG Zhijie, et al. Strengthen the affinity of element mercury on the carbonbased material by adjusting the coordination environment of single-site manganese[J]. Environmental Science & Technology, 2021, 55(20): 14126-14135.
- [67] YANG Jianping, LI Qin, ZU Hongxiao, et al. Surfaceengineered sponge decorated with copper selenide for highly efficient gas-phase mercury immobilization[J]. Environmental Science & Technology, 2020, 54(24): 16195-16203.
- [68] HAO Runlong, MA Zhao, ZENG Zefeng, et al. Removal and recovery of gaseous elemental mercury using a Cl-doped protonated Polypyrrole@MWCNTs composite membrane[J]. Environmental Science & Technology, 2022, 56(6): 3689-3698.
- [69] MA Zhao, HAO Runlong, LIU Tianxin, et al. Spontaneous adsorption–oxidation of gaseous elemental mercury *via* a conjugated unit–NH⁺-Cl*: Creation and mechanisms[J]. Journal of Materials Chemistry A, 2023, 11(27): 14850-14859.
- [70] LI Hailong, ZU Hongxiao, LI Qin, et al. Coordinatively unsaturated selenides over CuFeSe₂ toward highly efficient mercury immobilization[J]. Environmental Science & Technology, 2022, 56(1): 575-584.