糠醛转化为生物燃料的研究进展

徐迎迎,漆新华*

(南开大学环境科学与工程学院,天津 300350)

摘要: 生物燃料的应用可极大缓解化石燃料过度开发利用产生的能源危机及一些列环境问题。 糠醛是最重要的生物质基平台化合物之一,其衍生的糠醇、四氢糠醇、2-甲基呋喃、乙酰丙酸酯、 呋喃醚和 γ-戊内酯等化学品因其较高的能量密度和辛烷值等特性,具有代替传统化石能源作为新 型生物燃料或燃料添加剂的巨大潜力。通过生物基糠醛高值转化为生物燃料的研究,既可以缓解 日益加剧的能源危机,又符合国家"碳达峰"和"碳中和"的发展战略。系统概述了糠醛通过加氢、 加氢脱氧、醇解和内酯化等反应生产生物燃料的过程,探究了糠醛转化过程的反应路径、机理及 催化研究进展,并对衍生的不同性质的生物燃料做了简要评价。最后,针对糠醛转化为生物燃料 面临的问题与挑战,提出了相应的解决方向,以期为糠醛转化为生物燃料的研究提供参考。 关键词: 生物质;糠醛; 催化; 生物燃料; 生物燃料评价 中图分类号: X505 文献标识码: A

Advances in the conversion of furfural to biofuels

XU Yingying, QI Xinhua*

(*College of Environmental Science and Engineering, Nankai University, Tianjin* 300350, *China*) **Abstract**: The application of biofuels could greatly alleviate energy crises and environmental problems caused by the overexploitation of fossil resources. Furfural is one of the most valuable biobased platform compounds, and its derivatives, such as furfuryl alcohol, tetrahydrofurfuryl alcohol, 2methylfuran, levulinates, furfuran ether, and γ -valerolactone, possess great potential as biofuels or fuel additives due to their high energy density and octane ratings. Furthermore, the study of furfural conversion to biofuels could significantly alleviate the energy crisis and aligns with the national "carbon peak" and "carbon neutrality" development strategies. This review overviews the production of biofuels from furfural through hydrogenation, hydrodeoxygenation, alcoholysis, and cascade reactions. The conversion process, reaction mechanisms, and catalytic progress are discussed, and the derived biofuels with different properties are briefly evaluated. Finally, the challenges in the conversion process are outlined to provide guidance for future research in this area.

Keywords: Biomass; Furfural; Catalysis; Biofuels; Biofuel evaluation

0 引 言

第二次工业革命后,化石燃料的应用促进了 运输和工业行业的迅速发展^[1]。然而全球化石资 源的储量极为有限,且世界各地分布极不均衡,对 石油等化石能源的过度开发利用加剧了能源枯 竭,同时引起了一系列严重的环境问题,如温室效 应、水资源污染等^[2]。因此,寻找化石能源的可再 生替代品是解决能源与发展之间矛盾的根本途 径。生物质作为唯一一种含碳的可再生能源,其 开发过程中产生的二氧化碳可以被植物重新固 定,而且生物质储量丰富、广泛易得,成本低廉,是

收稿日期: 2024-10-27 修回日期: 2024-11-18 接受日期: 2024-11-22 DOI: 10.20078/j.eep.20241202 基金项目: 国家自然科学基金资助项目(22178181); 天津市自然科学基金资助项目(21JCZDJC00180); 中央高校基本科研业务费资助项目 (南开大学 63243129)

作者简介:徐迎迎(1992—), 女, 山东聊城人, 博士研究生, 主要研究方向为生物质高值资源化。E-mail: 1656075180@qq.com 通讯作者:漆新华(1977—), 男, 江西宜丰人, 教授, 主要研究方向为生物质高值资源化。E-mail: gixinhua@nankai.edu.cn

缓解化石资源短缺的理想绿色能源^[3]。世界各国 正在朝着生物质能源的工业化和商业化利用迈 进。2022年,我国提出"加快发展有规模有效益 的生物质能等新能源"的战略目标^[4]。2023年,美 国能源部(US Department of Energy, DOE)发布的 报告显示,其生物质能源产出足以满足国内 5% 的能源需求^[5]。2018年,欧盟修订的《可再生能源 指令》中将 2030年可再生能源的消费占比由 32% 提升至 40%^[6]。

生物燃料是以可再生生物质为原料,通过各种转化技术获得的碳中性燃料,具有可持续性、可 再生性和环保性,是理想的化石能源替代品^[7]。使 用生物质衍生燃料和化学品可有效缓解能源压 力,减少污染物和温室气体排放。以非食用性淀 粉和木质纤维素生物质作为原料的生物燃料属于 第二代生物燃料,包括从纤维素和半纤维素中生 产的生物乙醇和呋喃衍生物如甲基呋喃、呋喃 醚、乙酰丙酸酯和γ-戊内酯等精细化学品^[8]。与 第一代生物燃料不同,第二代生物燃料原料不与 食物竞争,来源更为广泛且造价更为低廉,成为替 代化石能源的研究热点。

木质纤维素衍生的含有呋喃环或其他含氧官 能团的化合物,与乙醇相比具有更高的能量密度 和辛烷值(BRON),在替代石油基燃料方面具有突 出优势^[9]。木质纤维素广泛存在于植物中,包括草、 硬木、软木等^[10]。木质素纤维素主要由纤维素 (25%~50%)、半纤维素(15%~25%)和木质素 (15%~25%)组成,此外还有一些灰分和提取 物^[11]。半纤维素酸催化产生的糠醛(Furfural)是最 有前途的生物质基平台化学品之一,其还原产生 的糠醇、四氢糠醇、2-甲基呋喃以及醚化或开环产 生的糠醚、乙酰丙酸酯和 γ-戊内酯等精细化学品, 因与燃料汽油具有相当的燃料性质,具有作为生 物燃料代替传统化石能源的巨大潜力[12]。本文综 述了由糠醛催化产生各类生物燃料的转化过程、 催化机理及近期研究进展,以期为后续由糠醛生 产生物燃料提供理论支持。

1 糠醛简介

糠醛被称为生物质衍生的最高附加值化学品 之一,是生物精炼生产的关键化学品,广泛用于塑 料、医药的合成,以及各种呋喃衍生的精细化学品 和生物燃料的生产^[13-14]。目前,全球每年生产约 40万t糠醛,市场价值估计为18亿美元,并以每 年 5% 的速度稳步增长。中国是最大的糠醛生产 国, 年产量约占全球总产量的 70%^[15]。糠醛的生 产与转化具有巨大的商业价值。

糠醛主要通过半纤维素中木聚糖的水解和脱水产生。桂格燕麦公司于1921年利用均相催化剂H₂SO₄首次实现糠醛的工业化生产^[16]。然而,目前糠醛的工业生产仍然延续传统且低效的技术,糠醛产率低、使用腐蚀性均相酸催化剂、高能耗和严重污染限制了其发展。为了克服这些问题,人们致力于通过使用多相酸催化剂和不同的溶剂系统来提高糠醛的生产效率和分离效率。

木糖生产糠醛的多相酸催化剂主要包括不同 类型的沸石^[17]、离子交换树脂^[18]、离子液体^[19]和 磺化金属氧化物/碳化物^[20-21]。对其反应路径研究 表明,木糖可以在布朗斯特酸(Brønsted acid)催化 下直接脱水转化为糠醛,当催化体系同时存在布 朗斯特酸和路易斯酸(Lewis acid)两种活性位点, 木糖先在路易斯酸的作用下异构化为木酮糖,随 后布朗斯特酸促进木酮糖脱水为糠醛^[20](图1)。 布朗斯特酸在反应过程中是必需的,路易斯酸与 布朗斯特酸的协同作用促进反应的进行。有研究 表明,路易斯酸与布朗斯特酸的比率(L/B)直接影 响脱水速率和糠醛收率。最佳 L/B 比率通常在 30%~80%的范围内。由于高转化率,较高的 L/B 比会导致形成更多的碳质副产物, 而较低的 L/B 比会增强不希望的聚合反应^[22-24]。

除多相催化剂外,反应溶剂体系对于糠醛生产也极其重要。水相体系是最早用于生物质生产糠醛的溶剂体系,但较高的温度和反应时间导致了聚合副产物胡敏素的产生,致使糠醛产率较低^[25]。有机溶剂在提高木糖溶解的同时还可以减少糠醛解聚等副反应的发生,增强了糠醛的稳定性^[26]。因此,利用糠醛在有机相和水相之间的分配系数,采用水相和有机相的两相溶剂体系以提高糠醛产率的方法得到了广泛研究,水和有机溶

剂组成的两相溶剂系统已被证明是用于糠醛生产 的理想系统^[27-28]。γ-戊内酯/水、甲苯/水、丁醇/水、 二甲基亚砜/水是木糖脱水制备糠醛的常用反应 溶剂^[29-30]。LIN 等^[31]利用分子动力学模拟和密度 泛函理论(DFT)计算相结合的方法,研究了溶剂 对两相体系中木糖转化为糠醛的影响,从溶解度、 分配系数、氢键和自由能等角度分析了糠醛制备 的常用两相体系对反应的影响,结果表明,两相体 系中水相促进木糖的溶解,而有机相有利于将木糖 与糠醛分离,糠醛在有机相的溶剂化自由能(ΔGsol) 提高,从而促进木糖的转化并提高糠醛的产率。

2 糠醛转化为生物燃料的反应路径及研究 进展

糠醛衍生的生物燃料,由于具有环境友好性 和可持续的战略优势引起人们的极大关注。糠醛 可通过加氢、醚化、醇解或多种级联反应等生成 性质各异的生物燃料。本篇综述了糠醛衍生的糠 醇、四氢糠醇、2-甲基呋喃、乙酰丙酸酯、糠醚及 γ-戊内酯等产物,重点介绍了反应路径和催化研 究进展。

2.1 糠醛加氢制备糠醇

糠醇是糠醛的醛基(C=O)加氢产物,反应路 径如图 2 所示。糠醇可进一步转化为生物燃料分 子、树脂、合成纤维和一些精细化工产品,如维生 素 C、赖氨酸等^[32]。美国桂格燕麦公司首次报道 了糠醛液相催化加氢制备糠醇的研究,在 Cu-Cr 催化剂上,在 100~160 ℃反应温度和 10~20 MPa 的 H₂ 压力下,获得了 95%~98%的糠醇产率^[13]。 尽管 Cu-Cr 催化剂具有高选择性,但 Cr⁶⁺的毒性 导致了严重的环境污染。为了实现环境友好前提 下糠醛加氢制备糠醇的目标,已经报道了各种无 铬催化剂,包括贵金属催化剂(如 Pd、Pt、Ru等) 和非贵金属催化剂(如 Cu、Ni、Co 和 Fe等),以及 固体酸-碱催化剂(如 Hf 基和 Zr 基催化剂)。下文 将对已有的催化剂根据活性位点类型对其催化性 能和催化机理进行详细介绍。

2.1.1 贵金属催化剂催化糠醛加氢制备糠醇

贵金属对于氢的活化和解离具有较高的催化 活性,因此在糠醛加氢制备糠醇的反应中应用广 泛。BAGNATO等^[33]制备了聚砜醚膜负载 Ru 的 催化膜反应器,以克服氢的传质阻碍,实现低 H2需求、高催化活性和高糠醇选择性,该反应器 在 70 ℃ 反应条件下, 糠醇的选择性高于 99%, 且 周转频率(TOF)为48000/h,表明了催化膜反应器 有助于提高 Ru 催化活性。GAO 等^[34] 制备了 CeO, 载体上负载 PtFe 合金纳米粒子的催化剂, 与单 Pt 金属负载的催化性能对比表明了合金加氢的协 同作用。通过对比不同溶剂对催化效果的影响发 现异丙醇与乙醇、水、甲苯等溶剂相比拥有更高 的反应速率,表明加氢反应存在溶剂效应。通过 同位素分析发现异丙醇并没有充当氢供体促进糠 醛加氢,而是通过与溶解的氢交换进而促进加氢 反应的进行。DU 等^[35] 制备了 Cu-Pd 合金催化剂 催化糠醛加氢,通过对比单一金属催化剂与Cu-Pd 双金属催化剂的催化活性证实了 Cu 和 Pd 的协同 作用,并且 XRD 图谱也证明了合金的形成。优选 的最佳催化剂以甲酸为氢供体,170 ℃ 下反应 3 h 获得了98.1%的糠醇产率,反应机理研究表明, Cu主要起到提高糠醇选择性的作用,而Pd主要 通过提高氢吸附能力来提高糠醛转化率。

2.1.2 非贵金属催化剂催化糠醛加氢制备糠醇

贵金属在地球上相当稀缺,而且非常昂贵,因 此使用非贵金属催化糠醛加氢是更经济的选择。 JIA 等^[36] 制备了 SiO₂ 载体负载 Ni/Fe 双金属催化 剂,实验结果表明 Ni 和 Fe 具有协同效应,并确定 了 Ni: Fe 摩尔比为 3:1 的比例作为后续条件优 化的催化剂。通过对反应溶剂的比较,得出甲醇 对促进糠醛加氢具有高催化活性,以甲醇为溶剂, 140 ℃ 下反应 150 min, 糠醛的产率为 100%, 糠醇 的选择性达 96.5%。WANG 等^[37] 制备了 Ni 负载 的木质素基有序介孔碳,催化糠醛在正丙醇溶剂 中的加氢反应, 3 MPa的 H, 压力下, 180 ℃反应 12 h, 获得 91% 的糠醛转化率和 98.6% 的糠醇选 择性,实现糠醛高效转化的同时也完成了生物质 作为催化剂的高值化利用。PRAKRUTHI等^[38]制 备了 Cu-Al 负载的催化剂, 对糠醛加氢制备糠醇 表现出优异的活性。同时发现随着分散在孔中的 Cu质量分数从 5% 增至 15%, 糠醇转化率成比例 地增加。在负载质量分数 15%Cu 的催化剂催化 下获得糠醇的最大产率,为87%(摩尔分数)。

综合分析贵金属与非贵金催化剂催化糠醛加 氢的反应过程,糠醛加氢的催化氢转移机理如下: 氢供体羟基中的一个氢原子和另一个与α-C键合 的氢原子首先转移到金属表面,形成金属氢化物 中间体。糠醛分子也被吸附在活性金属位点上。 然后,将金属氢化物的活性氢原子添加到糠醛的 羰基中,形成最终的转移氢化产物糠醇。

2.1.3 固体酸-碱催化剂催化糠醛加氢制备糠醇

除了金属催化剂,带有酸碱活性位点的催化 剂也对糠醛加氢制备糠醇表现出优异的催化活 性。ZHOU 等^[39] 以造纸工业的废副产品木质素磺 酸盐为原料,在水热条件下与 ZrCl₄组装,制备了 Zr 掺杂木质素基催化剂。通过一系列表征表明. 木质素磺酸盐中酚羟基与 Zr⁴⁺之间的强配位形成 了强路易斯酸碱偶对位点 (Zr⁴⁺-O²⁻) 和多孔的无 机-有机框架结构,而木质素磺酸盐中固有的磺酸 基可以作为布朗斯特酸性位点。这些多用途酸 碱位点协同作用催化糠醛在温和条件下通过 Meerwein-Ponndorf-Verley (MPV) 反应加氢制备糠 醇,80℃下可获得糠醇产率达96%。该文对多种 酸碱位点协同作用的催化机理做了假设:将异丙 醇吸附在催化剂上,通过酸碱偶联位点 (Zr⁴⁺-O²⁻)将其解离成醇氧化合物和氢。同时,碱性 O²⁻原子增强了异丙醇的去质子化。底物分子中 的羰基被路易斯酸性 Zr⁴⁺或吸电子的布朗斯特酸 位(磺酸基)激活,与异丙醇形成六元环过渡态,通 过 β-H 消除直接发生氢化物转移,生成相应的醇 和丙酮。

2.2 糠醛完全加氢制备四氢糠醇

四氢糠醇是糠醛的醛基(C==O)和呋喃环的 碳碳双键(C==C)完全加氢产物,反应路径如图 3 所示,醛基首先加氢成为糠醇,后呋喃环的 C==C 加氢为四氢糠醇。四氢糠醇通常作为重要的绿色 溶剂用于工业树脂和燃料添加剂领域^[40]。在工业 上,四氢糠醇的生产包括 2 个步骤:在 Cu-Cr 催化 剂上将糠醛氢化为糠醇,而后在贵金属催化剂上 将糠醇氢化为四氢糠醇^[41]。然而,由于制备和提 纯工艺的复杂性、Cr 催化剂的强毒性和反应条件 的苛刻以及贵金属的昂贵成本,迫切寻找低能耗 和简单工艺将糠醛一步转化为四氢糠醇的方法。 由于激活 C==O 和 C==C 所需活性位点的差异,反 应通常需要不同性质的双活性位点。下文对在双 金属催化下将糠醛一步转化为四氢糠醇的催化机 理做了详细介绍。

先前关于糠醛氢化为四氢糠醇的研究主要集 中在贵金属(如 Pt^[42]、 Pd^[43-44]、 Ru^[45]等)负载于金 属氧化物载体作为催化剂,贵金属作为主要的加 氢活性位点,金属氧化物载体一方面使贵金属均 匀分散,另一方面与贵金属协同作用增强底物吸 附从而增强催化性能。相比之下,近年来非贵金 属催化剂受到更多关注。非贵金属 Ni、Cu、Co 等 已被公认为氢化反应中的低成本和高活性相物 质, 尤其是金属 Ni 易于与呋喃环的 π 键形成强相 互作用,对糠醛转化为四氢糠醇具有高催化活 性^[46]。尽管 Ni 等非贵金属催化剂对 H₂ 吸附和活 化表现出高活性,活化的H难以从Ni表面脱附, 减缓了随后的氢化过程。通常通过引入第二氧化 物或金属的方式增强催化活性。LIN 等^[47]采用浸 渍法制备了负载 Ni 的 Ni-ReO,/TiO,催化剂,该催 化剂对糠醛加氢制四氢糠醇反应具有良好的催化 活性, 3 MPa H₂ 压力下, 130 ℃ 反应 3 h, 四氢糠醇 产率达 97.6%。ReO, 对 C=O 和 H, 有较好的亲 和力,有利于 Ni 表面的 H 溢出和 C==O 键活化, 从而增强了 Ni 和 ReO, 的协同效应。MATSAGAR 等^[48]比较了不同负载型 Ni 催化剂(Ni/活性炭、 Ni/炭黑、Ni/骨炭、Ni/金属-有机骨架)对糠醛加氢 制备四氢糠醇的催化活性,结果表明以活性炭为 载体的 Ni 催化剂表现出更高的催化活性, 产率达 99%,活性炭载体的疏水性、较高的 BET 比表面 积和较小的 Ni 颗粒尺寸是加氢性能优越的主要 原因。

通过密度泛函理论分析反应物在催化剂表面 的吸附能和吸附构型,推断金属的作用是解离氢, 金属氧化物(如 ReO_x、NiO、MoO_x等)的作用是结 合和活化基底^[45,47,49]。以 Ni-ReO_x 催化剂为例,当 催化剂含有 Ni 和 ReO_x时,糠醛的氢化途径如下: H₂在 Ni-ReO_x界面上优先吸附和解离成 H 原子, 然后 H 原子可以在热力学和动力学的双重驱动力 下溢出到 ReO_x表面。糠醛的 C=O 键优先吸附 在 ReO_x表面,然后被相邻 Ni 纳米颗粒上的 H 原 子氢化为糠醇。形成的糠醇迁移并吸附在 Ni 表 面上,然后其呋喃环被氢化成四氢糠醇,随后其脱 附^[47]。有研究表明,糠醛的平行吸附构型有利于 醛基和呋喃环的吸附并降低呋喃环加氢的反应能 垒,促进反应的进行^[50-51]。

2.3 糠醛加氢脱氧制备 2-甲基呋喃

2-甲基呋喃是糠醛的醛基氢化为糠醇后选择 性加氢脱氧的产物,反应路径如图4所示。2-甲 基呋喃是一种衍生于木质纤维素的用途广泛的化 合物,用于杀虫剂、绿色溶剂、香料添加剂和药物 等,特别是作为燃料添加剂^[9]。2-甲基呋喃可以由 糠醛或糠醇的选择性加氢脱氧(HDO)产生,为提 高糠醛的转化率和 2-甲基呋喃的选择性, 研究人 员开发了一系列具有优异催化性能的贵金属催化 剂,如 Ir、Pt、Ru等^[52-54]。贵金属昂贵的价格和天 然稀缺性,限制了其大规模应用。非贵金属 Cu-Cr 催化剂在 2-MF 的工业生产中具有良好的催化 性能,但Cr的环境毒性和苛刻的反应条件 (10~15 MPa H₂, 200~250 ℃)限制了其应用^[55]。 探究价格低廉、环境负担小的非贵金属催化剂成 为该领域研究的热点。下文对非贵金属催化剂催 化糠醛加氢脱氧制备 2-甲基呋喃的反应机理做详 细综述。

Fig. 4 Reaction pathway for the hydrodeoxidation of furfural to 2-methylfuran

非贵金属催化剂如过渡金属 Ni、Cu 和 Co,在 糠醛转化为 2-甲基呋喃中显示出高活性。尤其 是 Cu 基催化剂,因为对呋喃环的排斥作用,减少 了脱羰、环氢化或开环等副反应的产生,对糠醛加 氢脱氧制备 2-甲基呋喃具有突出的催化活性^[55-56]。 BHAVANA 等^[56] 制备了 Cu 纳米颗粒负载的 ZIF-8 材料用于 2-丙辛醇溶剂中糠醛通过催化氢转移 制备 2-甲基呋喃,糠醛的转化率超 99%, 2-甲基呋 喃产率达 93.9%,催化剂丰富的路易斯酸碱位点 和 Cu⁰ 对糠醛的加氢及后续的氢化具有重要作 用。LI 等^[57] 制备了负载 Cu 单质的层状硅酸铜催 化剂(Cu⁰/Cu₂O·SiO₂),以甲醇为氢供体,220 ℃ 反 应 2 h, 2-甲基呋喃产率为 90%。ZHANG 等^[58] 以 Co-Al 层状双氢氧化物纳米花为原料,通过纳米 ZIF-67 组装成 Co 团簇,将其用于糠醛的选择性加 氢,2-甲基呋喃的产率达96.7%。Co原子簇有利 于 C—O 键的桥联吸附,而抑制了呋喃环的吸 附。此外,超分散的 Co 团簇有利于糠醇中间体 C—OH 键的断裂,从而提高2-甲基呋喃的产率。 LI 等^[59]利用甘氨酸制备了一系列含有氧空位的 Co-Al 尖晶石催化剂,150 ℃下反应5h,2-甲基呋 喃产率可达97%以上。尖晶石中的 CoO_x可以诱 导 C—OH 的氢解, Al 提供丰富的酸性位点并充 当稳定的催化剂骨架。丰富的氧空位促进了糠醛 和中间产物糠醇的吸附,且 CoAl₂O₄的d带中心 下移促进了氢从 Co 向衬底的溢出,是催化剂高效 的主要原因。LIU 等^[60]制备了 NiMo 层状双金属 氢氧化物,该催化剂在较低的氢气压力(0.1 MPa) 下使糠醛加氢脱氧制备 2-甲基呋喃的产率达 99%。

糠醛的转化路径直接决定了糠醛加氢产物的 选择性,醛先加氢成为糠醇,随后再氢解为2-甲基 呋喃,因此该反应需要加氢和氢解两个过程^[56]。 研究机理表明,金属活性位点有利于醛基的吸附 与活化,形成中间产物糠醇。糠醛 C=O 键的倾 斜吸附方式可以避免呋喃环的加氢,有利于目标 中间产物的产生并减少副反应的发生^[61]。过渡金 属氧化物提供的路易斯酸性位点有利于 C-OH 键的氢解,提高 2-甲基呋喃的产率^[58]。糠醛生成 2-甲基呋喃的过程如下:糠醛的醛基首先吸附 在金属活性位点并活化形成糠醇,而后糠醇的 C-OH 键断裂生成亚甲基呋喃和羟基,并在活性 氢的作用下生成 2-甲基呋喃和水,最后所得 2-甲 基呋喃在催化剂表面解吸^[58]。

2.4 糠醛醇解制备乙酰丙酸酯

乙酰丙酸酯(乙酰丙酸甲酯、乙酰丙酸乙酯、 乙酰丙酸异丙酯和乙酰丙酸丁酯等)是糠醛经过 加氢、醇解等多个复杂过程生成的产物,反应体系 中可能存在的2种反应途径(图5,以乙酰丙酸乙 酯为例):(I)糠醛在金属或路易斯酸位点的催化 下首先加氢为糠醇,糠醇在布朗斯特酸催化下醚 化为糠基醚,随后糠基醚在酸性活性位点催化下 开环产生乙酰丙酸酯;(II)糠醛在布朗斯特酸催 化下缩醛化和酯化转化为糠醛缩二乙醇(2-DMF), 而后在路易斯酸催化下氢解为乙基糠基醚,再经 过开环产生乙酰丙酸乙酯^[62]。

乙酰丙酸酯在调味品以及柴油和生物柴油添加剂中具有潜在的应用^[63]。乙烯丙酸酯优秀的抗爆指数、高润滑性、合适的流动性和稳定的闪点使其作为生物燃料添加剂显示出巨大的商业前

图 5 糠醛转化为乙酰丙酸酯的两条反应路径

Fig. 5 Two reaction pathways for the conversion of furfural to alkyl levulinate

景。目前,乙酰丙酸乙酯主要通过乙酰丙酸的酯 化或是糠醇的醇解产生,但乙酰丙酸或糠醇商业 化生产过程中需要较高的成本^[64-65]。为解决上述 问题,近期从纤维素或木糖、葡萄糖等生物质生产 乙酰丙酸酯的研究已见报道。DOOKHEH等^[66] 制备了一种以异丙醇铝代替铝盐合成有机无机杂 化的硅铝酸盐载体并负载磺酸基的双功能催化 剂,以木糖为底物生产乙酰丙酸己酯得到 52% 的 产率。YU等^[67]以硫酸铝为催化剂,10% 乙二醇 作为乙醇溶剂的助溶剂催化葡萄糖转化,乙酰丙 酸乙酯的收率为 56%。由此可见,直接由生物质 生产乙酰丙酸酯的产率并不理想。

与纤维素或糖直接生产乙酰丙酸酯的反应相 比,由糠醛级联转化为乙酰丙酸酯的反应避免了 产物的多次分离程序,在可持续性和能效方面是 较优选择^[68],而且糠醛可由糖类合成且其商业化 生产已较为成熟。糠醛转化为乙酰丙酸酯需要加 氢和醇解两步反应,因此需要兼具金属加氢和醇 解的双功能催化剂。目前的双功能催化剂载体 以具有一定酸性的介孔硅酸盐或金属氧化物为 主^[68-69]。LI 等^[70] 制备了以 SBA-15 为载体负载 ZrAl 双金属的双功能催化剂,通过 Zr 与 Al 的比值调 节L/B以获得适中的酸性位点,180 ℃反应3h获 得 92.8% 的糠醛转化率和 67.3% 的乙酰丙酸乙酯 产率。以生物质制备的双功能催化剂目前鲜有报 道。CHEN 等^[71] 采用溶胶-凝胶法制备了 Nb₂O₅-ZrO,混合金属氧化物微球,通过调节 Nb: Zr 摩尔 比调整路易斯酸与布朗斯特酸的含量, Nb: Zr 摩 尔比为1:2时获得最佳的乙酰丙酸异丙酯产率 (66.5%)。TANG 等^[62] 制备了 Nb-Ni 双功能有序 介孔碳催化糠醛在乙醇溶液中一锅法制备乙酰丙 酸乙酯,在10%Nb负载的催化剂催化下,乙酰丙

酸乙酯的产率最高可达83%。

2.5 糠醛还原醚化制备糠醚

糠醚是糠醛醚化后的产物,其较高的能量密 度和十六烷值使其具有代替传统化石能源成为生 物燃料的巨大潜力^[72]。糠醛的醚化反应路径有 2种:直接醚化和还原醚化(图6)。直接醚化包括 糠醛醛基 C=O加氢生成糠醇,随后在酸催化下 与醇溶剂分子间脱水生成糠醚。还原醚化涉及醛 与醇溶剂的缩醛化,随后缩醛氢解形成醚^[73]。

由于糠醛生成糠醚的反应较为复杂,因此由 糠醛生产糠醚的研究较为有限,所需反应体系为 多相金属-酸催化体系,如沸石负载金属的催化 剂。SONG等^[74]制备了ZSM-5沸石负载 Ni的催 化剂,该催化剂通过调节ZSM-5中 Si/Al 比实现 对催化剂酸性的调节。研究结果表明,露易斯酸 中心促进糠醛加氢生成糠醇,而ZSM-5上的布朗 斯特酸中心则有效地催化了糠醇的连续醚化反 应。NUZHDIN等^[75]利用 CuAlO_x 复合金属氧化 物与沸石 HZSM-5-Al₂O₃混合作为双功能活性中 心, Cu 基催化剂确保糠醛加氢为糠醇, 然后在酸 催化剂的存在下与醇反应生成对应的糠醚,产率 达 94%。YANG 等^[76] 制备了 Pd 负载的 Pd/SiO₂-Al₂O₃ 金属-酸双功能催化剂, 在异丙醇溶剂中, 2-异丙氧基甲基呋喃的收率可达 86.2%, 金属和酸 性载体的协同催化作用促进了加氢和醚化反应的 顺序进行。双功能金属-酸催化剂中金属颗粒的 大小和酸中心的种类和数量对产物分布有显著影 响,较小的金属颗粒与适当的酸性促进醚化反应 的进行。除了催化剂活性中心,反应条件对糠醚 的形成也至关重要。HU 等^[77] 设计了一种含路易 斯酸和布朗斯特酸的 Zr 基双功能催化剂 Zr-HC-SO₃H, 通过控制反应温度和时间等条件控制反应 路径,在120℃下反应4h达到98.9%的糠醇产 率, 170 ℃下 12 h 达到 95.1% 的糠醚产率。ESSIH 等^[78]利用 SiO₂-ZrO₂纳米颗粒改性的黏土异质结 构催化糠醛转化,较低温度下(110℃)促进糠醇和 糠醚产物的产生, 而较高的反应温度(170℃)促进 反应的连续进行,产生乙酰丙酸酯和γ-戊内酯。

2.6 糠醛级联反应生成 γ-戊内酯

γ-戊内酯(GVL)是糠醛经加氢、开环、内酯化

等级联反应生成的产物,可用作食品添加剂、溶 剂,还可用作燃料添加剂。γ-戊内酯通常以乙酰 丙酸(LA)或乙酰丙酸酯为原料,贵金属为催化 剂,通过氢化后脱水内酯化而成^[79]。然而,昂贵的 原料和催化剂限制了其工业应用。糠醛作为价格 低廉并产量丰富的平台化合物,其生产γ-戊内酯 具有更广阔的商业前景。

与乙酰丙酸及其酯的反应途径相比,从糠醛 生产 γ-戊内酯更复杂,面临更复杂的反应步骤以 及苛刻的反应条件^[80]。糠醛至 γ-戊内酯的过程涉 及醛基还原、开环/重排、羰基还原和内酯化等反 应(图 7)。糠醛的醛基首先发生加氢反应生成糠 醇,糠醇在酸催化条件下再水解生成乙酰丙酸或 是醇解生成乙酰丙酸酯,乙酰丙酸及其酯经加氢 反应生成相应的戊酸或戊酸酯,最后经内酯化脱 水转化为 γ-戊内酯。在此过程中,中间体乙酰丙 酸及其酯的形成被认为是 γ-戊内酯形成的关键步 骤^[81]。复杂的反应过程导致副产物不可避免地产 生,γ-戊内酯的选择性降低。因此,化学转化过程 的关键是开发高性能催化剂以实现高 γ-戊内酯选 择性。

图 7 糠醛级联转化为 γ-戊内酯的反应路径 Fig. 7 Reaction pathways for the cascade conversion of furfural to γ-valerolactone

研究表明, 糠醛级联转化为 γ-戊内酯过程中 催化剂的路易斯酸位点和布朗斯特酸位点都是必 需的^[82-84]。大多数糠醛到 γ-戊内酯的级联反应催 化研究集中在改性沸石催化剂上。BUI 等^[85] 将含 有路易斯酸的 Zr-β 沸石和含有布朗斯特酸的铝硅 酸盐物理混合作为糠醛生产 γ-戊内酯的催化剂, 该催化剂显示出对 γ-戊内酯的高选择性, 产率接 近 80%。LIU 等^[80] 制备了一系列负载磷钨酸 (HPW)的 Zr-SBA-15 双功能催化剂, 并以异丙醇 为氢供体和溶剂将糠醛一锅法转化为γ-戊内酯, 结果表明γ-戊内酯的选择性受 HPW 与 Zr 比例的 显著影响。通过改变 HPW 和 Zr 的负载量可以有 效地调节路易斯酸和布朗斯特酸的量,进而影响 γ-戊内酯的选择性。在优化的酸性位点与载体比 例条件下(HPW:ZrOCl₂:SBA-15 = 2:4:15), γ-戊内酯产率可达 83.1%。ZHANG 等^[86]利用浸 渍-焙烧法制备了 Zr-石墨化氮化碳/H-β 复合材料 (ZreCN/H-β), 160 °C 下反应 18 h, γ-戊内酯产率 达 76.5%。除改性沸石外,负载杂多酸或无机酸的 铅基金属有机骨架材料也在级联催化反应中表 现出优异的催化性能。MA 等^[87]将磷钨酸(PW)、磷 钼酸(PMo)或硅钨酸(SiW))等限制在 Zr-MOF中,设计了含路易斯-布朗斯特酸的双功能金属有机框架材料,160℃下反应 23 h,GVL 产率最高为 58.1%。XUE 等^[88]利用锆基金属有机框架 (MOF-808)浸渍不同强度的酸(三氟甲磺酸,硫酸,氨基磺酸和三氟乙酸)制备双功能催化剂,浸渍三氯甲磺酸的材料具有合适的路易斯酸和布朗斯特酸强度,γ-戊内酯产率高达 83%。

糠醛转化为γ-戊内酯的反应过程包括 3 个步骤(以异丙醇为氢供体):(i)在路易斯酸活性中心的诱导下,糠醛以异丙醇为氢供体通过催化氢转移生成糠醇;(ii)糠醇被布朗斯特酸质子化,攻击亲电α-碳并挤出水,随后去质子化形成异丙基糠基醚。然后异丙基糠基醚被布朗斯特酸质子化后水解,通过去质子化形成乙酰丙酸异丙酯;(iii)乙酰丙酸异丙酯与异丙醇反应,通过催化氢转移形成 4-羟基戊酸。路易斯酸中的 Zr⁴⁺与 4-HP 中的羰基结合以除去异丙醇,并依次内酯化形成γ-戊 内酯^[82]。

3 糠醛衍生生物燃料特性评价

糠醛衍生物作为生物燃料的潜力在于其高能 量密度、适宜的辛烷值等,使其在内燃机中的应用 更为高效。糠醛的加氢产物糠醇是衍生生物燃料 的主要中间产物,较少直接作为生物燃料使用,对 其燃料特性暂不做评价。本节重点对 2-甲基呋 喃、乙酰丙酸酯、糠醚和γ-戊内酯等化合物作 为生物燃料或燃料添加剂的燃烧特性和排放特性 进行评价,并指出糠醛衍生生物燃料目前应用的 不足,为进一步提升生物燃料的性能提供理论 基础。

3.1 2-甲基呋喃作为生物燃料

2-甲基呋喃具有比乙醇更高的能量密度和辛 烷值,在生物燃料领域具有广阔的应用前景^[12]。 LI等^[89]对比了2-丁酮、2-甲基呋喃(2-MF)、2-甲 基四氢呋喃(2-MTHF)、正辛醇和二正丁基醚 (DnBE)5种具有潜力的生物燃料的点火延迟和火 焰速度等燃烧特性,总结了其对内燃机燃烧的影 响。结果表明,2-甲基呋喃的辛烷值高于汽油,可 以用于较高压缩比的汽油机。SINGH等^[90]对比 了2-甲基呋喃/汽油共混物与乙醇/汽油共混物的

点火质量测试,发现虽然 2-甲基呋喃比乙醇更具 反应性,但2-甲基呋喃共混物表现出更长的点火 延迟时间。辛烷值是表征燃料抗爆性能的一个重 要指标。通过测试 2-甲基呋喃的辛烷值,发现 2-甲基呋喃混合组分的辛烷值高于乙醇混合组分, 即表明 2-甲基呋喃在发动机中表现出更强的抗爆 震性。有研究对比了 2-甲基呋喃与汽油、乙醇的 燃烧特性与排放特性,结果表明由于2-甲基呋喃 分子结构简单,燃烧速度快,赋予其比汽油具有更 好的爆震抑制能力。由于燃烧温度较高且含氧量 高,2-甲基呋喃燃烧产生的HC排放量比汽油少 73%, 但产生更高的 NO_x 排放^[91-92]。将 2-甲基呋 喃以不同体积比例(1%~3%)与汽油混合,发现添 加3%体积2-甲基呋喃的混合燃料的制动热效率 (27.22%)高于纯汽油的制动热效率(26.82%),主 要是由于2-甲基呋喃更快的燃烧速率增加了共混 物的气缸压力和放热速率^[93]。

3.2 乙酰丙酸酯类液体燃料

在生物燃料中,乙酰丙酸酯由于其高闪点、低 毒性、良好的润滑性、可忽略的硫含量、生物降解 性、较低的总废气排放以及生产原料可再生等特 性,被认为是石油柴油的最佳替代品^[94]。乙酰丙 酸甲酯、乙酯、丁酯化合物由于其物理性质,包括 表面张力、折射率、密度、溶解度和黏度等与生物 柴油相近,是常见的燃料添加剂^[95]。除此之外,乙 酰丙酸酯的化学性质包括氧化能力、加氢能力、 氧含量和在高温压力下的降解能力,使其作为燃 料添加剂在提高燃料效率方面发挥着重要作用^[96]。

TIAN 等^[97]的研究表明,由于乙酰丙酸酯的 羰基和酯官能团, C1和 C2乙酰丙酸酯具有更好的 抗爆性能,这是由于在发动机自燃过程中形成了 稳定的中间体。LEI 等^[98] 详细研究了乙酰丙酸乙 酯混合燃料的性能特征,其中发现纯乙酰丙酸乙 酯和乙酰丙酸乙酯的混合燃料的发动机功率、十 六烷值和扭矩几乎相似,而且混合燃料的能耗低 于纯燃料,这表明混合燃料具有更好的功效。混 合燃料的酸值、蒸馏温度和密度都在燃料标准的 限制范围内,但混合后燃料的闪点、含氧量、润滑 性、流动性、倾点和氧化稳定性增加,冷流特性、 放热和运动黏度降低。因此,乙酰丙酸酯类化合 物因其热值特性而被称为辛烷值促进剂^[99]。此 外,乙酰丙酸乙酯混合燃料会引起更多的蒸发潜 热,从而有助于燃料燃烧室内的冷却效果,并降低 放热效果。

乙酰丙酸乙酯混合燃料的排放性能表明,与 非混合燃料相比,其燃烧和排放更清洁。有研究 发现,柴油中加入乙酰丙酸乙酯添加剂后,碳氢化 合物、多芳烃、一氧化碳、颗粒物、含硫化合物、 氮氧化物和烟尘排放显著减少。这归因于乙酰丙 酸乙酯的高氧含量,因为酮和酯官能团在自氧化 过程中形成稳定的中间体。燃料燃烧室的温度越 低,氮氧化物排放量随之减少44%^[98]。RAUT等^[100] 研究了混溶性高达70%(体积分数)的乙酰丙酸辛 酯混合物的燃料性能,该混合物在60天内提供均 匀的混合物,并被称为潜在的燃料液化剂。此外, 乙酰丙酸辛酯混合燃料的闪点、倾点、燃点、运动 黏度、热值和十六烷值均在燃料标准的范围内。

因此,合适的(甲基、乙基、丁基、辛基)乙酰 丙酸酯组合物可以用作潜在的燃料添加剂,提供 优异的发动机性能,显著减少有害气体的排放,是 低毒、环保化石燃料替代品。

3.3 呋喃醚类液体燃料

呋喃醚在乙酰丙酸酯的生产中起中间体的作 用,具有作为燃料添加剂代替化石燃料的巨大潜 力。有研究表明,不同链长的呋喃醚作为燃料添 加剂的功能有所不同,含有较短烷基链的醚(如甲 基叔丁基醚)会增加燃料的辛烷值。含有较长烷 基链的醚(如二正己基醚)提高了柴油的十六烷 值^[9]。添加含氧化合物是涡轮增压技术之一,用于 通过增加燃料的辛烷值来减少燃料消耗,提高燃 料效率,并减少二氧化碳排放。将高辛烷值燃料 送入气缸可以使发动机的气缸抵抗爆震。

燃料添加剂的沸点应确保燃料/添加剂混合物 符合要求,即混合物的最终沸点不应超过基础燃 料(终点:175 ℃)(即汽油)沸点的15 ℃^[101]。单呋 喃醚的沸点范围为134~189 ℃,高于乙醇的沸点 (78.4 ℃)。汽油是一种石油衍生产品,由液态脂 肪族和芳香烃的混合物组成,碳原子数在 $C_4 \sim C_{12}$ 之间,沸点范围为 30~225 ℃^[102]。鉴于此,所有的 呋喃醚都符合比汽油沸点更低的要求。

此外,呋喃醚具有低汽化热和高体积燃烧热, 当它们与汽油混合时,很可能对发动机的内燃产 生积极影响。呋喃醚的油水分配系数(log P)相对 于乙醇的 log P 更高,这表明燃料添加剂的稳定性 最大限度地减少了汽油中的水污染。汽油中的高 水分会导致有机相和水相之间的相分离,会产生 更高的燃烧温度,可能会对发动机造成损坏^[103]。 呋喃醚和汽油混合的辛烷值较高,表明这些化合 物有望作为高辛烷值汽油的组分。

3.4 γ-戊内酯液体燃料

γ-戊内酯保留了葡萄糖 97% 的能量,其燃烧 能量与乙醇相似(29.7 MJ/kg)。通过使用低成本 的原料,γ-戊内酯的生产价格从 2~3 美元/加仑不 等,这使其成为一种较为便宜和实用的潜在燃料 添加剂^[104]。然而,与化石燃料相比,γ-戊内酯具有 较低的能量密度和十六烷值以及较高的水溶性, 这限制了其在运输燃料生产中的直接应用。

HORVÁTH 等^[105] 认为, γ-戊内酯作为燃料添 加剂的性能与乙醇非常相似。与含氧化合物(如 甲醇、乙醇、甲基叔丁基醚和乙基叔丁基醚)相 比, γ-戊内酯的蒸汽压最低(80 ℃ 时为 3.5 KPa)。 就控制挥发性有机化合物(VOC)的排放而言,后 者是燃料的一个重要参数。γ-戊内酯可以与汽油 和柴油混合作为燃料添加剂。BERECZKY^[106]等 报道,化石柴油与γ-戊内酯混合后,污染物排放量 (CO、总碳氢化合物和烟雾)显著减少,与 100% 化石柴油相比,颗粒物排放量减少了 47%,展现 了 γ-戊内酯在控制空气污染和缓解全球变暖方面 的重要作用。

与乙醇不同, γ-戊内酯不会与水形成共沸物, 因此在最终纯化步骤中不需要共沸蒸馏或分子筛 方法。γ-戊内酯具有相对较高的沸点和闪点,长 期储存稳定,危险等级较低。此外,其在一个小的 五元环上有 2 个氧原子,提供了相对较高的氧化 电势和高密度。与乙醇相比,这种流体的蒸汽压 相对较低;因此,当液体与汽油混合时,由于 γ-戊 内酯起到了"保管器"的作用,在储存过程中可降 低 VOC 的排放^[107]。

3.5 生物质液体燃料的不足

生物质燃料的氧化、低温耐受性差和微生物 降解是导致燃料劣化的公认挑战。生物质燃料的 氧化是由于从碳原子中去除氢或生物柴油与环境 氧反应,产生过氧化氢、过氧化物和羧酸。它会对 柴油燃料质量和发动机性能产生负面影响。已经 证实,氧化反应通常涉及甲酯的不饱和脂肪酸组 成,并且通过空气、热和光加速^[108]。生物质燃料 的低温耐受性差主要是由于其高饱和脂肪酸含量 在冬季结晶,导致燃料管路和过滤器堵塞。燃油 中饱和酯的含量越高,其浊点、倾点和冷滤器堵塞 点就会增加^[109]。微生物活性也被发现会导致生 物质燃料变质。BEKER等^[110]表明,微生物降解 会导致生物质燃料的黏度、酸值和含水量增加超 出标准规范。

为克服上述问题,已经发现使用合成化学添 加剂非常有效。例如, 2-叔丁基-4-甲氧基苯酚 (BHA)、2-叔丁基苯-1,4-二醇(TBHQ)和 2,6-二叔 丁基-4-甲基苯酚(DBPC)等添加剂已被用于最大 限度地减少氧化引起的燃料劣化。同样, 糖酯 S270 和 S1570、 聚甘油酯 LOP-120DP、 硅油 TSA750、 杜拉特柴油添加剂(DDA)、十二烷基硫酸钠 (SDS)和硫酸镁可有效防止低温导致的燃料结 晶。微生物活性可以被一些合成添加剂抑制,从 而抑制生物柴油的微生物降解^[94]。

4 结论与展望

糠醛作为一种重要的生物质平台化合物,其 高值转化为生物燃料的过程为解决能源危机和实 现碳中和提供了可行路径。通过加氢、加氢脱 氧、醇解和内酯化等反应,可以将糠醛高效转化为 一系列生物燃料和燃料添加剂,展现出良好的替 代化石燃料的潜力,其辛烷值往往高于传统乙醇 燃料添加剂,并可减少二氧化碳和固体颗粒物的 排放。糠醛高值转化过程的转化效率低、能耗高 等问题是限制其工业化应用的主要因素。因此, 未来的研究应聚焦于开发更高效且环境友好的催 化剂,优化反应工艺以提高能效并减少副产物生 成,重点关注以下方面。

(1)开发廉价且高效的催化剂,尤其是非贵金 属 Ni、Cu 和 Co 等,其在催化糠醛加氢或级联转 化为生物燃料中已表现出优异的催化性能,进一 步加强其稳定性是非贵金属催化剂催化糠醛制备 生物燃料迈向工业生成的关键步骤。

(2)优化反应条件,糠醛转化为生物燃料需要 高温和高H,压力,通过催化条件的优化降低反应 温度和压力,或以有机溶剂作为氢供体(如乙醇、 异丙醇、甲酸等)代替传统 H., 从而降低反应能耗 是生物燃料实现工业生产的重要因素。

(3)构建高效的连续化生产体系,利用固定反 应床实现反应的连续进行,是实现生物燃料工业 化生产的重要手段。

参考文献 (References):

- HERMANN BG, BLOK K, PATEL M K. Producing bio-[1] based bulk chemicals using industrial biotechnology saves energy and combats climate change[J]. Environmental Science & Technology, 2007, 41(22): 7915-7921.
- XIA Ao, CHENG Jun, MURPHY J D. Innovation in [2]

biological production and upgrading of methane and hydrogen for use as gaseous transport biofuel[J]. Biotechnology Advances, 2016, 34(5): 451-472.

- [3] AL HAMAMRE Z, SAIDAN M, HARARAH M, et al. Wastes and biomass materials as sustainable-renewable energy resources for Jordan[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 295-314.
- 张玉梅,杨浩东,刘立.中美生物质能领域研究比较分 [4] 析 [J/OL]. 世界科技研究与发展: 1-16[2024-11-11]. https:// doi.org/10.16507/j.issn.1006-6055.2024.04.101. ZHANG Yumei, YANG Haodong, LIU Li. Comparative analysis of biomass energy research in China and America[J/OL]. World Sci-Tech R & D: 1-16[2024-11-11]. https://doi.org/10.16507/j.issn.1006-6055.2024.04.101.
- [5] SHERIDAN C. Shot in the arm for biotech fuels[J]. Nature Biotechnology, 2024, 42: 1628.
- 慕彦君,雪晶,鲜楠莹.欧盟生物产业发展现状及趋势 [6] 研究 [J]. 当代石油石化, 2024, 32(4): 33-39. MU Yanjun, XUE Jing, XIAN Nanying. Research on the development status and trend of bio-industry in EU[J]. Petroleum & Petrochemical Today, 2024, 32(4): 33-39.
- [7] ZHAO Kangyu, WEN Bin, TANG Qing, et al. Recent catalytic innovations in furfural transformation[J]. Green Chemistry, 2024, 26(19): 9957-9992.
- [8] KALOUDAS D, PAVLOVA N, PENCHOVSKY R. Lignocellulose, algal biomass, biofuels and biohydrogen: A review[J]. Environmental Chemistry Letters, 2021, 19(4): 2809-2824.
- [9] NATSIR T A, SHIMAZU S. Fuels and fuel additives from furfural derivatives via etherification and formation of methylfurans[J]. Fuel Processing Technology, 2020, 200: 106308.
- [10] KAPOOR M, RAJ T, VIJAYARAJ M, et al. Structural features of dilute acid, steam exploded, and alkali pretreated mustard stalk and their impact on enzymatic hydrolysis[J]. Carbohydrate Polymers, 2015, 124: 265-273
- [11] CALCIO GAUDINO E, CRAVOTTO G, MANZOLI M, et al. From waste biomass to chemicals and energy via microwave-assisted processes[J]. Green Chemistry, 2019, 21(6): 1202-1235.
- BOHRE A, DUTTA S, SAHA B, et al. Upgrading [12] furfurals to drop-in biofuels: An overview[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(7): 1263-1277.
- MARISCAL R, MAIRELES TORRES P, OJEDA M, et [13] al. Furfural: A renewable and versatile platform molecule for the synthesis of chemicals and fuels[J]. Energy & Environmental Science, 2016, 9(4): 1144-1189.
- 武刚,肖睿,张会岩.生物质定向热解制备高附加值化 [14] 学品研究进展 [J]. 能源环境保护, 2024, 38(2): 43-56. WU Gang, XIAO Rui, ZHANG Huiyan. Research progress in the preparation of high value added chemicals by

10

directional pyrolysis of biomass[J]. Energy Environmental Protection, 2024, 38(2): 43-56.

- [15] BIELSKI R, GRYNKIEWICZ G. Furan platform chemicals beyond fuels and plastics[J]. Green Chemistry, 2021, 23(19): 7458-7487.
- [16] COUSIN E, NAMHAED K, PÉRÈS Y, et al. Towards efficient and greener processes for furfural production from biomass: A review of the recent trends[J]. Science of the Total Environment, 2022, 847: 157599.
- [17] HE Y, ZHANG R, SONG W, et al. 1, 4-Dioxane intervention enables simultaneous valorization of biomass-based C5 and C6 sugars to furfural over Hβ zeolite[J]. Chemical Engineering Journal, 2024, 480: 48092.
- [18] SBOIU D M, MÁRQUEZ MEDINA M D, LARA-SERRANO M, et al. Catalytic conversion into 5-hydroxymethylfurfural and furfural by heterogeneous sulfonic acid catalysis in a flowing acetone–water system[J]. Fuel, 2024, 372: 132200.
- [19] XU Guangzhi, TU Zhuoheng, HU Xingbang, et al. Protic Brønsted acidic ionic liquids with variable acidity for efficient conversion of xylose and hemicellulose to furfural[J]. Fuel, 2023, 339: 127334.
- [20] LI Xiaoyun, LU Xuebin, LIANG Min, et al. Conversion of waste lignocellulose to furfural using sulfonated carbon microspheres as catalyst[J]. Waste Management, 2020, 108: 119-126.
- [21] WANG Xiaoqi, QIU Mo, TANG Yiwei, et al. Synthesis of sulfonated lignin-derived ordered mesoporous carbon for catalytic production of furfural from xylose[J]. International Journal of Biological Macromolecules, 2021, 187: 232-239.
- [22] LI Xiaodan, JIA Pei, WANG Tiefeng. Furfural: A promising platform compound for sustainable production of C_4 and C_5 chemicals[J]. ACS Catalysis, 2016, 6(11): 7621-7640.
- [23] XU Guangzhi, TU Zhuoheng, HU Xingbang, et al. New insight into dehydration reaction of xylose and hemicellulose to furfural over dual-acid deep eutectic solvent catalysts[J]. Chemical Engineering Journal, 2024, 496: 154112.
- [24] ZHAN Qiwen, LIN Qixuan, LIU Yao, et al. Insights into Lewis/Brønsted acidity of metal chlorides and solvent effect of alcohols for synthesis of γ-valerolactone by combining molecular dynamics simulations and experiments[J]. Fuel, 2023, 335: 126749.
- [25] RAMAN J K, GNANSOUNOU E. Furfural production from empty fruit bunch–A biorefinery approach[J]. Industrial Crops and Products, 2015, 69: 371-377.
- [26] LEE C B T L, WU T Y. A review on solvent systems for furfural production from lignocellulosic biomass[J]. Renewable and Sustainable Energy Reviews, 2021, 137: 110172.

- [27] DULIE N W, WOLDEYES B, DEMSASH H D. Synthesis of lignin-carbohydrate complex-based catalyst from Eragrostis tef straw and its catalytic performance in xylose dehydration to furfural[J]. International Journal of Biological Macromolecules, 2021, 171: 10-16.
- [28] SENER Canan, MOTAGAMWALA A H, ALONSO D M, et al. Enhanced furfural yields from xylose dehydration in the γ-valerolactone/water solvent system at elevated temperatures[J]. ChemSusChem, 2018, 11(14): 2321-2331.
- [29] LIN Qixuan, LIAO Shouwei, LI Libo, et al. Solvent effect on xylose conversion under catalyst-free conditions: Insights from molecular dynamics simulation and experiments[J]. Green Chemistry, 2020, 22(2): 532-539.
- [30] WANG Ye, DAI Yanan, WANG Tianhao, et al. Efficient conversion of xylose to furfural over modified zeolite in the recyclable water/n-butanol system[J]. Fuel Processing Technology, 2022, 237: 107472.
- [31] LIN Qixuan, ZHAN Qiwen, LI Rui, et al. Solvent effect on xylose-to-furfural reaction in biphasic systems: Combined experiments with theoretical calculations[J]. Green Chemistry, 2021, 23(21): 8510-8518.
- [32] AN Zhidong, LI Jiang. Recent advances in the catalytic transfer hydrogenation of furfural to furfuryl alcohol over heterogeneous catalysts[J]. Green Chemistry, 2022, 24(5): 1780-1808.
- [33] BAGNATO G, FIGOLI A, URSINO C, et al. A novel Ru-polyethersulfone (PES) catalytic membrane for highly efficient and selective hydrogenation of furfural to furfuryl alcohol[J]. Journal of Materials Chemistry A, 2018, 6(12): 4955-4965.
- [34] GAO Xing, TIAN Suyang, JIN Yunyun, et al. Bimetallic PtFe-catalyzed selective hydrogenation of furfural to furfuryl alcohol: Solvent effect of isopropanol and hydrogen activation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(33): 12722-12730.
- [35] DU Juan, ZHANG Jiaren, SUN Yong, et al. Catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol over *in situ* prepared nano Cu-Pd/C catalyst using formic acid as hydrogen source[J]. Journal of Catalysis, 2018, 368: 69-78.
- [36] JIA Pei, LAN Xiaocheng, LI Xiaodan, et al. Highly active and selective NiFe/SiO₂ bimetallic catalyst with optimized solvent effect for the liquid-phase hydrogenation of furfural to furfuryl alcohol[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 13287-13295.
- [37] WANG Xiaoqi, QIU Mo, SMITH R L Jr, et al. Ferromagnetic lignin-derived ordered mesoporous carbon for catalytic hydrogenation of furfural to furfuryl alcohol[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(49): 18157-18166.
- [38] PRAKRUTHI H R, CHANDRASHEKARA B M, JAI

PRAKASH B S, et al. Hydrogenation efficiency of highly porous Cu-Al oxides derived from dealuminated LDH in the conversion of furfural to furfuryl alcohol[J]. Journal of Industrial and Engineering Chemistry, 2018, 62: 96-105.

- [39] ZHOU Shenghui, DAI Fanglin, XIANG Zhouyang, et al. Zirconium-lignosulfonate polyphenolic polymer for highly efficient hydrogen transfer of biomass-derived oxygenates under mild conditions[J]. Applied Catalysis B: Environmental, 2019, 248: 31-43.
- [40] SHENG Yingying, TIAN Fuping, WANG Xiang, et al. Carbon-encapsulated Ni catalysts derived from citrate complexes for highly efficient hydrogenation of furfural to tetrahydrofurfuryl alcohol[J]. Energy, 2024, 292. 130360.
- [41] CHEN Bingfeng, LI Fengbo, HUANG Zhijun, et al. Tuning catalytic selectivity of liquid-phase hydrogenation of furfural via synergistic effects of supported bimetallic catalysts[J]. Applied Catalysis A: General, 2015, 500: 23-29
- [42] TAYLOR M J, DURNDELL L J, ISAACS M A, et al. Highly selective hydrogenation of furfural over supported Pt nanoparticles under mild conditions[J]. Applied Catalysis B: Environmental, 2016, 180: 580-585.
- [43] ZHU Yanru, ZHAO Wenfang, ZHANG Jian, et al. Selective activation of C-OH, C-O-C, or C=C in furfuryl alcohol by engineered Pt sites supported on layered double oxides[J]. ACS Catalysis, 2020, 10(15): 8032-8041.
- SHANMUGARAJ K, BEDOYA S, GONZÁLEZ VERA [44] D, et al. Palladium nanoparticles immobilized on TiO₂ nanosheets matrix for the valorization of furfural to produce tetrahydrofurfuryl alcohol[J]. Journal of Environmental Chemical Engineering, 2024, 12(5): 113442.
- [45] CAO Yueling, ZHANG Hepeng, LIU Kangkai, et al. Biowaste-derived bimetallic Ru-MoO_x catalyst for the direct hydrogenation of furfural to tetrahydrofurfuryl alcohol[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(15): 12858-12866.
- [46] CHEN Shuo, WOJCIESZAK R, DUMEIGNIL F, et al. How catalysts and experimental conditions determine the selective hydroconversion of furfural and 5-hydroxymethylfurfural[J]. Chemical Reviews, 2018, 118(22): 11023-11117.
- LIN Wei, CHEN Yi, ZHANG Yuexing, et al. Surface [47] synergetic effects of Ni-ReO_x for promoting the mild hydrogenation of furfural to tetrahydrofurfuryl alcohol[J]. ACS Catalysis, 2023, 13(17): 11256-11267.
- MATSAGAR B M, LI T H, VAN NGUYEN C, et al. [48] Furfural hydrogenation into tetrahydrofurfuryl alcohol under ambient conditions: Role of Ni-supported catalysts and hydrogen source[J]. Industrial Crops and Products, 2023, 195: 116390.
- [49] FU Qiuju, YAN Liting, LIU Dandan, et al. Highly-12

dispersed surface NiO species and exposed Ni (200) facets facilitating activation of furan ring for high-efficiency total hydrogenation of furfural[J]. Applied Catalysis B: Environmental, 2024, 343: 123501.

- [50] ZHANG Huiling, YANG Jingnan, ZHAO Teng, et al. In-situ constructing ultrafine NiCo alloy confined in LDH nanoflower for efficient selective hydrogenation of furfural[J]. Chemical Engineering Journal, 2024, 494: 152881.
- [51] RAO T U, SUCHADA S, CHOI C, et al. Selective hydrogenation of furfural to tetrahydrofurfuryl alcohol in 2butanol over an equimolar Ni-Cu-Al catalyst prepared by the co-precipitation method[J]. Energy Conversion and Management, 2022, 265: 115736.
- [52] ZHANG Yuanjing, WANG Si, YANG Yusen, et al. A switchable hydrogenation chemoselectivity of biomass platform compounds based on solvent regulation[J]. Applied Catalysis B: Environment and Energy, 2024, 346: 123719
- [53] DATE N S, HENGNE A M, HUANG K W, et al. Single pot selective hydrogenation of furfural to 2-methylfuran over carbon supported iridium catalysts[J]. Green Chemistry, 2018, 20(9): 2027-2037.
- [54] REN Wengiang, TIAN Jiamin, WANG Zhiqiang, et al. Tuning the amount of Sn⁰ around Ru to promote hydrodeoxygenation of furfural[J]. Applied Catalysis A: General, 2024, 685: 119894.
- AN Yadan, WU Qi, NIU Libo, et al. Investigating [55] hydrodeoxygenation of furfural for 2-methylfuran production over Cu-Mo/CoO_x catalyst: Influence of Mo promoter[J]. Journal of Catalysis, 2024, 429: 115271.
- KULKARNI B B, MARADUR S P. Tandem hydrogena-[56] tion/hydrogenolysis of furfural to 2-methylfuran over multifunctional metallic Cu nanoparticles supported ZIF-8 catalyst[J]. Bioresource Technology, 2024, 402: 130805.
- [57] LI Bolong, LI Lulu, SUN Hao, et al. Selective deoxygenation of aqueous furfural to 2-methylfuran over Cu0/Cu₂O·SiO₂ sites via a copper phyllosilicate precursor without extraneous gas[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 12096-12103.
- [58] ZHANG Huiling, ZHOU Xiaomei, LIU Longxin, et al. Assembling Co clusters via nanosized ZIF-67 sprouted from CoAl-LDH nanoflower for selective hydrogenation[J]. Applied Catalysis B: Environmental, 2023, 338: 123026.
- LI Yongwang, SHEN Qi, NIAN Yao, et al. Promoting [59] effect of oxygen vacancies in Co/CoAl2O4 catalyst steered with a straightforward method on hydrogenation of furfural to 2-methylfuran[J]. Applied Catalysis B: Environmental, 2024, 343: 123529.
- [60] LIU Wei, YANG Yusen, CHEN Lifang, et al. Atomically-ordered active sites in NiMo intermetallic compound toward low-pressure hydrodeoxygenation of furfural[J].

Applied Catalysis B: Environmental, 2021, 282: 119569.

- [61] WANG Chenyu, WU Chan, DENG Longbin, et al. Ni promoted Cu/ZSM-5 for selective hydrodeoxygenation of furfural to produce 2 – Methylfuran[J]. Fuel, 2023, 353: 129233.
- [62] TANG Yiwei, LIU Xiaoning, XI Ran, et al. Catalytic one-pot conversion of biomass-derived furfural to ethyl levulinate over bifunctional Nb/Ni@OMC[J]. Renewable Energy, 2022, 200: 821-831.
- [63] TIAN Yijun, ZHANG Fangfang, WANG Jieni, et al. A review on solid acid catalysis for sustainable production of levulinic acid and levulinate esters from biomass derivatives[J]. Bioresource Technology, 2021, 342: 125977.
- [64] MOHAMMADBAGHERI Z, NAJAFI CHERMAHINI A. Catalytic conversion of furfuryl alcohol to n-hexyl levulinate using modified dendritic fibrous nanosilica[J]. Chemical Engineering Journal, 2019, 361: 450-460.
- [65] SONG Daiyu, AN Sai, SUN Yingnan, et al. Efficient conversion of levulinic acid or furfuryl alcohol into alkyl levulinates catalyzed by heteropoly acid and ZrO₂ bifunctionalized organosilica nanotubes[J]. Journal of Catalysis, 2016, 333: 184-199.
- [66] DOOKHEH M, NAJAFI CHERMAHINI A, SARAJI M. Organic-inorganic bi-functionalized hybrid KIT-5: A toolbox for catalytic dehydration of xylose to n-hexyl levulinate[J]. Renewable Energy, 2022, 200: 527-536.
- [67] YU Xin, PENG Lincai, DAI Jun, et al. Ethylene glycol co-solvent enhances alkyl levulinate production from concentrated feeds of sugars in monohydric alcohols[J]. Fuel, 2021, 304: 121471.
- [68] ZHU Shanhui, CEN Youliang, GUO Jing, et al. One-pot conversion of furfural to alkyl levulinate over bifunctional Au-H₄SiW₁₂O₄₀/ZrO₂ without external H₂[J]. Green Chemistry, 2016, 18(20): 5667-5675.
- [69] ANTUNES M M, LIMA S, NEVES P, et al. Integrated reduction and acid-catalysed conversion of furfural in alcohol medium using Zr, Al-containing ordered micro/mesoporous silicates[J]. Applied Catalysis B: Environmental, 2016, 182: 485-503.
- [70] LI Mengzhu, WEI Junnan, YAN Guihua, et al. Cascade conversion of furfural to fuel bioadditive ethyl levulinate over bifunctional zirconium-based catalysts[J]. Renewable Energy, 2020, 147: 916-923.
- [71] CHEN Bingfeng, LI Fengbo, HUANG Zhijun, et al. Hydrogen-transfer conversion of furfural into levulinate esters as potential biofuel feedstock[J]. Journal of Energy Chemistry, 2016, 25(5): 888-894.
- [72] NGUYEN H, XIAO N, DANIELS S, et al. Role of lewis and Brønsted acidity in metal chloride catalysis in organic media: Reductive etherification of furanics[J]. ACS Catalysis, 2017, 7(10): 7363-7370.
- [73] GUO Xiaowen, WU Haihong, WU Peng, et al. Efficient

synthesis of bioetheric fuel additive by combining the reductive and direct etherification of furfural in one-pot over Pd nanoparticles deposited on zeolites[J]. Green Energy & Environment, 2023, 8(2): 519-529.

- [74] SONG Mengxue, QIU Chonghao, MA Pengfei, et al. Effect of Lewis and Brønsted acidity in Ni/ZSM-5 on catalytic reductive etherification of furfural and alcohols[J]. Renewable Energy, 2023, 212: 468-477.
- [75] NUZHDIN A L, WANG Yazhou, VLASOVA E N, et al. Continuous-flow reductive etherification of furfural over CuAlO_x catalyst combined with HZSM-5-Al₂O₃ composite[J]. Fuel, 2024, 356: 129622.
- [76] YANG Kaixuan, WANG Ruonan, XU Dongxue, et al. Metal-acid dual sites in Pd/SiO₂-Al₂O₃ synergistically catalyze selective hydrogenation-etherification of furfural to bioether[J]. Journal of Catalysis, 2023, 425: 170-180.
- [77] HU Lei, SHA Baogang, SHI Yingxuan, et al. Switchable transformation of biomass-derived furfural to furfuryl alcohol and isopropyl furfuryl ether over a zirconium-based bifunctional catalyst[J]. Chemical Engineering Journal, 2024, 498: 155725.
- [78] ESSIH S, CECILIA J A, JIMÉNEZ GÓMEZ C P, et al. Synthesis of porous clay heterostructures modified with SiO₂-ZrO₂ nanoparticles for the valorization of furfural in one-pot process[J]. Advanced Sustainable Systems, 2022, 6(5): 2100453.
- [79] YAN Long, YAO Qian, FU Yao. Conversion of levulinic acid and alkyl levulinates into biofuels and high-value chemicals[J]. Green Chemistry, 2017, 19(23): 5527-5547.
- [80] LIU Zonghui, ZHANG Zhongze, ZHOU Yali, et al. Phosphotungstic acid supported on Zr-SBA-15 as an efficient catalyst for one-pot conversion of furfural to γ-valerolactone[J]. Fuel, 2024, 356: 129631.
- [81] YU Zhihao, LU Xuebin, LIU Chen, et al. Synthesis of γvalerolactone from different biomass-derived feedstocks: Recent advances on reaction mechanisms and catalytic systems[J]. Renewable and Sustainable Energy Reviews, 2019, 112: 140-157.
- [82] LIU Bo, CHEN Xiaozhou, XU Yaxuan, et al. A combo Zr-zeolite and Zr(OH)₄ mixture composition for one-pot production of γ-valerolactone from furfural[J]. Renewable Energy, 2024, 229: 120751.
- [83] MUTLU B, UNAL B, UNLU D. A novel and clean technique for the one-pot production of green chemical γ-valerolactone from furfural using bifunctional H₃PW₁₂O₄/UiO-66 catalyst: Pervaporation membrane reactor[J]. Journal of Environmental Chemical Engineering, 2024, 12(3): 112665.
- [84] SHAO Yuewen, LI Qingyin, DONG Xinyi, et al. Cooperation between hydrogenation and acidic sites in Cu-based catalyst for selective conversion of furfural to γ-valerolactone[J]. Fuel, 2021, 293: 120457.
- [85] BUI L, LUO H, GUNTHER W R, et al. Domino reac-

tion catalyzed by zeolites with Brønsted and Lewis acid sites for the production of γ -valerolactone from furfural[J]. Angewandte Chemie (International Ed), 2013, 52(31): 8022-8025.

- [86] ZHANG Tingwei, LU Yijuan, LI Wenzhi, et al. One-pot production of γ-valerolactone from furfural using Zrgraphitic carbon nitride/H-β composite[J]. International Journal of Hydrogen Energy, 2019, 44(29) : 14527-14535.
- [87] MA Mingwei, HOU Pan, ZHANG Peng, et al. Tandem catalysis of furfural to γ-valerolactone over polyoxometalate-based metal-organic frameworks: Exploring the role of confinement in the catalytic process[J]. Renewable Energy, 2024, 227: 120474.
- [88] XUE Wei, MA Mingwei, HOU Pan, et al. One-pot tandem conversion of furfural to γ-valerolactone over a series of modified zirconium-based metal–organic frameworks with variational Lewis and Brønsted acid sites[J]. Fuel, 2024, 371: 132115.
- [89] LI Jing, YE Lan, GONG Shiqi, et al. Review on the combustion progress and engine application of tailor-made fuels from biomass[J]. Renewable and Sustainable Energy Reviews, 2024, 192: 114242.
- [90] SINGH E, SHANKAR V S B, TRIPATHI R, et al. 2-Methylfuran: A bio-derived octane booster for spark-ignition engines[J]. Fuel, 2018, 225: 349-357.
- [91] WANG Chongming, XU Hongming, DANIEL R, et al. Combustion characteristics and emissions of 2-methylfuran compared to 2, 5-dimethylfuran, gasoline and ethanol in a DISI engine[J]. Fuel, 2013, 103: 200-211.
- [92] THEWES M, MUETHER M, PISCHINGER S, et al. Analysis of the impact of 2-methylfuran on mixture formation and combustion in a direct-injection spark-ignition engine[J]. Energy & Fuels, 2011, 25(12): 5549-5561.
- [93] NARAYANAMOORTHY R, SIVAPRAKASAM S, SARAVANAN C G, et al. Experimental investigation of 2methyl furan as an additive with camphor blended gasoline blend for SI engines[J]. Fuel, 2021, 306: 121748.
- [94] LAWAN I, ZHOU Weiming, GARBA Z N, et al. Critical insights into the effects of bio-based additives on biodiesels properties[J]. Renewable and Sustainable Energy Reviews, 2019, 102: 83-95.
- [95] ZHANG Heng, LI Hu, HU Yulin, et al. Advances in production of bio-based ester fuels with heterogeneous bifunctional catalysts[J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109296.
- [96] BADGUJAR K C, BADGUJAR V C, BHANAGE B M. Synthesis of alkyl levulinate as fuel blending agent by catalytic valorization of carbohydrates *via* alcoholysis: Recent advances and challenges[J]. Catalysis Today, 2023, 408: 9-21.
- [97] TIAN Miao, MCCORMICK R L, LUECKE J, et al. Anti-knock quality of sugar derived levulinic esters and

cyclic ethers[J]. Fuel, 2017, 202: 414-425.

- [98] LEI Tingzhou, WANG Zhiwei, CHANG Xia, et al. Performance and emission characteristics of a diesel engine running on optimized ethyl levulinate-biodiesel-diesel blends[J]. Energy, 2016, 95: 29-40.
- [99] GHOSH M K, HOWARD M S, ZHANG Yingjia, et al. The combustion kinetics of the lignocellulosic biofuel, ethyl levulinate[J]. Combustion and Flame, 2018, 193: 157-169.
- [100] RAUT S U, BHAGAT P R. Sugarcane bio-refinery products: An efficient one umbrella approach for synthesis of biofuel and value-added compounds using metal-free photocatalyst[J]. Fuel, 2021, 303: 121154.
- [101] ZHANG Wenbin, ZHANG Zhou, MA Xiao, et al. Impact of injector tip deposits on gasoline direct injection engine combustion, fuel economy and emissions[J]. Applied Energy, 2020, 262: 114538.
- [102] VEMPATAPU B P, KANAUJIA P K. Monitoring petroleum fuel adulteration: A review of analytical methods[J]. TrAC Trends in Analytical Chemistry, 2017, 92: 1-11.
- [103] SERRANO RUIZ J C, DUMESIC J A. Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels[J]. Energy & Environmental Science, 2011, 4(1): 83-99.
- [104] BOND J Q, ALONSO D M, WANG D, et al. Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels[J]. Science, 2010, 327(5969): 1110-1114.
- [105] HORVÁTH I T, MEHDI H, FÁBOS V, et al. γ-valerolactone—A sustainable liquid for energy and carbon-based chemicals[J]. Green Chemistry, 2008, 10(2): 238-242.
- [106] BERECZKY Á, LUKÁCS K, FARKAS M, et al. Effect of γ-valerolactone blending on engine performance, combustion characteristics and exhaust emissions in a diesel engine[J]. Natural Resources, 2014, 5(5): 177-191.
- [107] BRUNO T J, WOLK A, NAYDICH A. Compositionexplicit distillation curves for mixtures of gasoline and diesel fuel with γ-valerolactone[J]. Energy & Fuels, 2010, 24(4): 2758-2767.
- [108] PULLEN J, SAEED K. An overview of biodiesel oxidation stability[J]. Renewable and Sustainable Energy Reviews, 2012, 16(8): 5924-5950.
- [109] SIERRA CANTOR J F, GUERRERO FAJARDO C A. Methods for improving the cold flow properties of biodiesel with high saturated fatty acids content: A review[J]. Renewable and Sustainable Energy Reviews, 2017, 72: 774-790.
- [110] BEKER S A, DA SILVA Y P, BÜCKER F, et al. Effect of different concentrations of tert-butylhydroquinone (TBHQ) on microbial growth and chemical stability of soybean biodiesel during simulated storage[J]. Fuel, 2016, 184: 701-707.