5540 55 1) g I8 % &R P Vol.40 No.1
2026 4F 2 H Energy Environmental Protection Feb., 2026

Tion, B, PR, SRR TN BN R A i B R P A R R T B R R (D). REURERSE AR 4,

RS 2026, 40(1): 1-15.

o -.||:| YU Shangyuan, LYU Weiguang, SUN Zhi, et al. Innovative Applications of Pressurized Technologies in
El =11 Spent Lithium-Ion Battery Recycling: Advances in Characterization and Recovery[J]. Energy Environmental
Bk

Protection, 2026, 40(1): 1-15.

T e g i A 1) B e, D 908 AR 2 A 3 Jie

,];l)%jfcl,2,3,4’ EI/T%’ \/1,2,3, %J\ Lbﬂvj—:l,2,3,4’ —%‘%i{?l,l&&*

(1. P EAFrAFHIHFHIEF S, LT 100190; 2. KRL B K REEHERANE R IR
d.0 ) Jb 1001905 3. FEA SRR TR, R 100190; 4. FEAFRE K, K 100190)
WE. AARMREAS W BARIES T, 428 B JE A IRA A SRS R 5o 5 BAKIRE
FERRAEELER, MERRERLEALRD FFH. B H FIRABR G EGFRE,
EEREAFERRZF 2R, RAGERT MER RS B EARAR FORRT R, L5L
RiELEANE BRI, MA B AR SR KBS F @y R, ARk, A N2 B
oy, mERR, RiFREMNZHRERRTENXE, BERA T4 4 BEANE B =D
F B A &I @, e B R GR#GE) TR TS 63 B P A AR & F b b EM A
FE B A 3 T Al 2 A AR T 8 R MRS B or @, e R AR £ 2 R T K BB AR A A 69 ANME
A, AR A LAl Sk, 4T3t de R A2 BAE R AEREE K | AR R AER R Bk 49 IR, B
ST RERT R, BEEF AR R EH R BT RILEAEF @O R, ST, mE
HRGEEMNFHIERZ NN Io R T, AR REZ DR RERABFFM, Rk pEEFE
KRR, RERN PRI, Atk %%, % RERIEFIET Bk %, H486-F SR, #F

BARBAGR Ao T T Ao RBAR GG 37 RARL, A A 3042 B B A IR AR 3 2R %
KR mERK; EVEE; ANEE; ittt A RE; RISEAE
FESES: X505 XHEfFRINEG: A XEHS: 2097-4183(2026)01-0001-15

Innovative Applications of Pressurized Technologies in Spent Lithium-

Ion Battery Recycling: Advances in Characterization and Recovery
YU Shangyuan"***, LYU Weiguang"*’, SUN Zhi"***, CAO Hongbin">>**
(1. Chemistry & Chemical Engineering Data Center, Chinese Academy of Sciences, Beijing 100190, China;
2. National Engineering Research Center of Green Recycling for Strategic Metal Resources, Beijing 100190,
China; 3. Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
4. University of Chinese Academy of Sciences, Beijing 100190, China)
Abstract: Driven by the global energy transition and the "dual-carbon" goals, the efficient recycling of
spent lithium-ion batteries (LIBs) is of great significance for securing critical metal resources and
mitigating environmental impacts. Pressurized technology, which alters reaction thermodynamic
equilibria and enhances kinetics under elevated temperature and pressure, offers a promising approach
for spent LIB recycling and has garnered significant attention in this field. This review systematically

summarizes recent advances in the application of pressurized technology for recycling spent LIBs, with
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a particular focus on three key areas: valuable metal extraction, synthesis of high-value materials, and
direct regeneration of electrode materials. In terms of valuable metal extraction, technologies such as
pressurized acid leaching, ammonia leaching, and oxidative leaching exhibit remarkable effectiveness in
enhancing the extraction of valuable metals. These methods significantly improve the leaching
efficiency and selectivity of critical metals such as lithium, cobalt, and nickel. The high-temperature,
high-pressure environment accelerates reaction rates, enables reactions that are non-spontaneous under
ambient conditions, and reduces reagent consumption. Beyond metal extraction, pressurized technology,
primarily the hydrothermal method, facilitates the short-path, high-value utilization of spent LIBs.
Purified leachates can be directly employed as precursors for the synthesis of functional materials, such
as cathode precursors and metal oxides, thereby upgrading waste into valuable products. Regarding
direct regeneration, hydrothermal repair presents a compelling alternative to traditional energy-intensive
solid-state calcination. This approach allows for an effective relithiation of degraded cathodes such as
LiFePO,, LiCoO,, and ternary materials (e.g., NMC) under milder conditions. The liquid-phase
environment ensures uniform lithium-ion diffusion, leading to more homogeneous repair, superior
recovery of electrochemical performance, lower energy consumption, and specific capacities
comparable to those of pristine materials. Furthermore, to address current challenges such as the
difficulty of in-situ characterization and the lack of suitable characterization technologies for
pressurized processes, this review also highlights advancements in in-situ characterization techniques.
The integration of specialized reactors with powerful tools such as synchrotron radiation X-ray
diffraction (XRD), X-ray absorption spectroscopy (XAS), and Raman spectroscopy enables real-time
observation of phase transitions, valence changes, and crystal growth during pressurized processes,
offering unprecedented insights into reaction mechanisms. Despite the promising laboratory-scale
successes, the industrial application of pressurized technologies still faces challenges, including
insufficient thermodynamic data for novel and mixed materials, inadequate mechanistic understanding,
lack of robust in-situ characterization techniques, and high equipment costs. Future development should
prioritize establishing comprehensive thermodynamic databases, developing multi-dimensional and
multi-scale in-situ characterization methods, innovating reactor designs for lower energy consumption
and cost, integrating pressurized processes with clean energy sources to reduce the carbon footprint, and
developing low-cost, corrosion-resistant materials for reactors. This review concludes that pressurized
technology holds significant potential for enabling closed-loop and sustainable recycling of spent LIBs.

Keywords: Pressurized technologies; Spent lithium-ion batteries; Valuable metals; High-value

materials; Regeneration; In-situ characterization
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Fig. 4 Experimental setups and characterization results
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