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Design and Mixing Performance of Active Microreactors with

Different Impeller Configurations
LI Hongshun, ZHANG Shikai, LI Wenlong, SUN Dongpeng”, CHEN Dong"
(College of Energy Engineering, Zhejiang University, Hangzhou 310027, China)
Abstract: Microreactors are widely applied in fields including chemical synthesis, pharmaceutical
production, and energy material applications. However, passive microreactors are generally limited by
inherent design constraints, including significant pressure drops and a high clogging risk, which restrict
their practical application in reaction systems involving high viscosity and solid particles. To address
this problem, this study enlarges the microchannel dimensions to the centimeter scale and develops a
novel active microreactor driven by a motor-driven stirring shaft to achieve mixing. This design is
suitable for high-viscosity and solid-particle-containing reaction systems, offering the advantages of
high mixing performance and high production throughput. Three impeller configurations were designed
within a 100 mm diameter flow domain: a straight blade (26 mm high), a straight blade with baffles
(incorporating four transverse baffles), and a propeller (110 mm pitch). By combining computational
fluid dynamics (CFD) simulations with experimental validation, the effects of time, inlet velocity, and
stirring speed on mixing performance were investigated, with segregation index (X5) and mixing
efficiency (1) as evaluation metrics. Simulations utilized the RNG k-¢ turbulence model and sliding

mesh technique on a water/glycerin system, with a grid size of 1.5 mm determined via grid
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independence tests. Analysis of mass transfer enhancement mechanisms showed that the straight blade
impeller induces a radial jet via localized shear; the straight blade impeller with baffles suppresses
circumferential vortices to convert momentum into radial/axial flow; and the propeller forms an axial-
driven through-flow ring. Mixed fluid reached the outlet fastest with the propeller (0.9 s), followed by
the straight blade (1.2 s) and the straight blade with baffles (1.3 s). Subsequently, the mixing efficiency
(1) rose rapidly and then stabilized. Mixing performance was ranked as: straight blade with baffles >
straight blade > propeller. Quantitative analysis indicated that the straight blade impeller reached a peak
efficiency of 90.74% at 358 r/min, while the straight blade impeller with baffles further improved this to
93.70%. Although the propeller performed poorest at low speeds, its efficiency surpassed that of the
straight blade at high speeds (956 r/min). Simulations also indicated that # decreased as inlet velocity
increased (0.1 to 1.0 m/s) due to reduced residence time. To validate the simulation results, a mixing
platform was constructed using the iodide-iodate reaction (c(H )=0.012 55 mol/L). Experiments verified
the simulation reliability and analyzed the effects of inlet velocity and stirring speed on the segregation
index (Xg). Results showed that stirring speed had a significantly greater impact on mixing effectiveness
than inlet velocity. Notably, increasing stirring speed from 0 to 280 r/min significantly reduced Xs from
0.978 to 0.268. The study concludes that the strategy of combining centimeter-scale scale-up with
forced mechanical shearing effectively resolves the mixing challenges of high-viscosity systems,
providing theoretical data and design criteria for industrial applications.

Keywords: Active microreactor; Stirring structure design; High viscosity; Numerical simulation;

Mixing efficiency; Mass transfer enhancement

0 51 7T

T LI S I A G Ao S O RS IR
WL ZRGE, ST A TR R AN (] BT s AT 5 R
Fk, BN B Tl S AR Ridx
TG A BRI, 34 S5 45 R RE A A e 47 T
LB, R U R gk, B R 4
PESESR™ . MR AR R 1 B 47, B3
J A A T R UE T RS B 4R AR, REAS
IR 28 38R AT A s ] B e A R
VR R TS BB B U A 6, LROR B R
H I 245 ¥ T AR AR A L3R T RR 5 i A e A
JRE B D0 7 A A2 T A% AR RE S5 RS 1 B i AR I
J3, R Tt AR SR Al B T G R ST,
TS ST A 368 R PSR AL BET T, SR LR A S L
I A% | AR B R S B A BT, I AT AR H
VAT 20 R ST e 7 T REAS B 3o o 7o B 4
AR, 55 HRRCR | i A MU T 1
S A, (RSO A R VR TR [ - 2 AR
S WU 2 W) I R A R B T A
HEBHIA T AT S T a0,

T3 B L 35 ] AR A YR e e R 7 A O S e
053 A sh 3 R sh U RS gh st
2

TR i 38 S /O B ) T 95 4 (a2 i 3 3
B A 1 B 5 ) R 5 | St A ™ A | AR R
s, ISR A s Ak, HAT S5 H ] 5 REFREL
155 7 S /N TN P2 L= =1 W N R o]
] R AL ) 52 2 A 2R R, 1 A s 7 e 1 T I O
SIFHLT1 2RI R | 5B B 1 2R TR AR A
Sl NN S B - @A i3t BURCIANG I € vk s S A
TR, ST IR A | R A B, 7E4E
PR i 2 4 [ P S B L ST TR, A
e IR T SR R AR [ A R B

TERG BN, 45 dhad 72 S 2 ARAE AL A% Tl b
FH e, v 6 B2 B [ A IORE B9 52 2 OB AR &R H 4
el o 3X M) AR R I R IR AL A B R
L S Rl GUR S I LS RTINS e W €
BR, Wi . AL RESE SN o DR AR R
107 8. 2 . LB I Ao 5 O ML
LA AR g i 2 A T U] 5 08 o 0 O, RERS AT
R TERH J7, ik JExE A By R AR 416 1 nl &
(IR A i pe L SR, B 32 s MU
fox 22 2R G 3 9K Bl R B 1 25, 52 IR
F14 368 T8 RUE S AT RS Bl 0 B, M DALE 4R e b
JEE 1A 2% i sl A R 1 Y ) I i 4 R 08 ) 5 DTS
J1, B o R AEIE S E . R T HEFRIR A BT ST



Z A TG A RN A, LIRS R I FE 5 L
B ROOLNEE T 19 32 BRI S FEA B 22 5, ik
FLEAR SO BLAS BB R, B0 22 i
B s WA FESS A BB R S LB A
FF RGBT

A TERE S 0 3 N 0 e 2 JROR 2%, T K
T AL B IR Sh B R 0 B s U
VAL S N INERY I NRERL 9 IEST T9iE Y % 4
3 PRI BEPEAS Y, IF FERST T AR LS
EB A AR G PERE R AL ORI
JEA R 55 < A ALK D 1 b ] 5 A R s A e 42
THT AbEE S YUESERE S . SRR T
(CFD) 40, 5 S5 36k, TR AT 1 AN [R) 10 PE 25
R RS 12 AT o SR R, B TIRE
R TR] | BE 1905 B B 5 25 O i 2 MR B AL
A AL, RGTE T i ke S Al
JRALBE . ASBTF B 7 S T [5) 1o 286 P R 5 ] 1A
R F2 19 32 3 2SN A 25 A8 BT I, S A G
Tl AR A R AL P S BRI AR AR S

1 EFRUR NSRS T SHEER

1.1 Ezh RS ERRIET
ANFEEFEEE DL E T Re A R 7 RN AR
1z BB, H LAY U 5 A B AL A1 R B
e B U5 A ) SR L A ) e I AR Ak B o
AR A Bl LA R A ) 3K S B 5 PR
o BT, AR BT T E MR BN
KRR 3 PR EAE#, anlEl 1 R . Horp Ent
A3 o) 2 e A B U5 AR 1) S R A TR A i A
L R T A T Ao A ) ) I, R 1) B
A A B, DN ITTHG SR TR A RIOR s RS 454
T2 L Ll ) 3K B R B FR R, S A R A
st . BT BTSSR X 5 R IR 0 AR 25 4, £
A A 2 AHEW T, 20 B A R AR, Z2m)
WA 1A . dF 038 A B AR 60 mm,
L Ik 2 A T Y LA YR 100 mm B
26 mm, % 20 mm, J& 5 mm, [B] & 90 mm; EL 30
PHARTE B2 0 Al L 353 4 AR ) P AR, RRAR

NI TEE IERLE
P HHA L) 60 mm
=
T<:Y 90 mm m . | R20 mm
¥ f— | = A RI0mm
. 26 mm| ( ‘
s L\ “\\ il W R50 mm
P ) . 20mm~
’7\ ‘ 660 mm ‘ J
‘ I
Ha (a) ELM3
#HoAC
A é
k’ — ]
|
X
OB ‘
T _ 570 mm - ‘ _
. 660 mm
I 1
HH (b) ELIF 22 Ik
BOA (C
z ) 8 mm
L: Y ‘ T 110 mm | S
X </ 29 mm | )
HEB — 1)
- — r\_/
[ 660 mm , ‘ J
I
H (c) MRiE

B 3MEHRANERRT

Fig.1 Structural design of different impeller configurations
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