生物质化学链燃烧中碱土金属修饰的 Cu 基氧载体的固氯特性研究

王德喆1, 米英杰1,2, 黄浩东1, 傅安东1, 马琎晨1,*, 赵海波1,*

(1. 华中科技大学 煤燃烧与低碳利用全国重点实验室, 湖北 武汉 430074; 2. 华中科技大学中欧清洁与可再生能源学院, 湖北 武汉 430074)

摘要:在含氯的生物质或煤粉的化学链燃烧过程中,微量元素 CI 会对氧载体和锅炉中的换热设备 造成严重腐蚀。然而,目前针对化学链燃烧中 HCI 行为的研究仍较为匮乏。为开发具有高效固氯 和抗氯能力的复合氧载体,优选 Ca 基和 Ba 基 2 种吸附剂,采用溶胶凝胶法合成复合载氧体,并开 展生物质化学链燃烧实验。重点探究了 Ca/Ba 掺杂对于 Cu 基载氧体固氯性能和燃烧性能的影 响。实验结果表明,Ca-Cu 和 Ba-Cu 载体中的碱土金属能够优先与 HCl 反应,生成稳定的氯化物, 从而提升氧载体的晶格氧活性,促进气固反应的进行。此外,Ca/Ba 掺杂在一定程度上增强了生物 质焦的气化效果。其中,Ca-Cu 氧载体表现出优异的稳定性,而 Ba-Cu 氧载体的燃烧效率则显著 受温度影响。研究还发现,提高氧燃比并不会改变生物质中氯向 HCl 转化的比例。进一步分析表 明,Ca/Ba 掺杂能够增大氧载体的比表面积和孔容,从而增加氧载体与生物质的接触面积,稳定其 化学链燃烧性能。有助于理解碱土金属固氯特性,促进抗氯氧载体的开发与应用。 关键词:化学链燃烧;氧载体;固氯; HCl 腐蚀; 生物质 中图分类号:X784

Characterization of Chlorine Fixation in Alkaline Metal-Modified Cu-Based Oxygen Carriers for Biomass Chemical Looping Combustion

WANG Dezhe¹, MI Yingjie^{1,2}, HUANG Haodong¹, FU Andong¹,

MA Jinchen^{1,*}, ZHAO Haibo^{1,*}

 State Key Laboratory of Coal Combustion and Low Carbon Utilization, Huazhong University of Science and Technology, Wuhan 430074, China;
 China-EU Institute for Cleanand Renewable Energy at Huazhong University of Science & Technology, Wuhan 430074, China)

Abstract: The presence of chlorine (Cl) in biomass or pulverized coal poses a significant challenge in chemical looping combustion (CLC), as it can corrode both oxygen carriers and the boiler's heat exchange equipment. Despite this, there is a notable lack of research focused on hydrochloric acid (HCl) in CLC processes. This study explores the development of a composite oxygen carrier aimed at enhancing chlorine fixation and corrosion resistance. To achieve this, two adsorbents, Ca-based and Babased, were selected. The composite oxygen carrier was synthesized using the sol-gel method, and a batch fluidized bed served as the experimental setup for biomass CLC experiments. The study investigated the effects of Ca and Ba doping on the combustion characteristics and chlorine bonding of

收稿日期: 2024-12-19 修回日期: 2025-03-09 接受日期: 2025-03-10 **DOI**: 10.20078/j.eep.20250317

基金项目:国家自然科学基金资助项目(52176107);湖北省重点研发计划项目(2023BCB109);武汉市科技计划资助项目(2023020302020572-02)

第一作者:王德喆(2000—),男,新疆博州人,硕士研究生,主要研究方向为生物质化学链燃烧。E-mail: 18116815889@163.com

^{*}通讯作者:马琎晨(1988—),男,山西太原人,副教授,主要研究方向为载氧体辅助燃烧,空气直接碳捕集,化学链燃烧。E-mail: majc@hust.edu.cn

赵海波(1977—),男,湖南宁乡人,教授,主要研究方向为多相反应流多尺度模拟、燃烧基础及燃烧源功能纳米颗粒、化学链燃烧 及高值化。E-mail: hzhao@mail.hust.edu.cn

Cu-based oxygen carriers. The results indicates that alkaline earth metals in Ca-Cu and Ba-Cu formulations preferentially form stable chlorides with HCl, enhancing the lattice oxygen activity of the carriers and promoting gas-solidification reactions. Notably, the peak CO₂ production and peak height for Ca-Cu and Ba-Cu carriers were significantly higher than those for standard Cu oxygen carriers. Additionally, Ca/Ba doping improved the gasification of biomass coke, with no detectable signals of H₂ and CH₄ during the reduction stage, suggesting more complete conversion of these gases by oxygen carriers. The peak CO concentrations were measured at 0.08%, 0.07%, and 0.06% for Ca-Cu, Ba-Cu, and Cu carriers, indicating enhanced CO conversion efficiency. Further experiments assessed the impact of temperature and oxygen-fuel ratio on combustion and dechlorination performance. Increasing the temperature from 800 °C to 900 °C resulted in a combustion efficiency rise for the Cu oxygen carrier from $87.0\% \pm 0.5\%$ to $94.7\% \pm 0.4\%$, representing a maximum increase of 8.6\%. Conversely, the combustion efficiency of the Ca oxygen carrier decreased slightly from $95.6\% \pm 0.6\%$ to $95.2\% \pm 0.1\%$. In contrast, the Ba oxygen carrier showed a significant improvement, increasing from $88.0\% \pm 1.6\%$ to $94.7\% \pm 0.4\%$, with a maximum increase of 8.7%. In biomass CLC, Ca-Cu oxygen carriers demonstrated superior temperature stability, while the combustion efficiency of Ba-Cu carriers was significantly affected by temperature changes. When the oxygen-fuel ratio was raised from 1.5 to 2.0, the chlorine fixation efficiency for Cu carriers increased from $84.3\% \pm 6.3\%$ to $96.3\% \pm 1.2\%$. Both Caand Ba-based oxygen carriers maintained 100% chlorine fixation efficiency, suggesting that lower oxygen-fuel ratios could be utilized in biomass dechlorination processes, thereby reducing carbon capture operating costs. Moreover, doping with Ca and Ba increased the specific surface area and pore volume of the oxygen carriers, increasing the contact area with biomass and thereby stabilizing their performance in CLC. This study helps to understand the chlorine fixation characteristics of alkali earth metals, promoting the development and application of anti-chlorine carriers.

Keywords: Chemical looping combustion; Oxygen carriers; Chlorine fixation; HCl corrosion; Biomass

0 引 言

化学链燃烧(Chemical Looping Combustion, CLC)是一种具有 CO₂内分离特性的新型燃烧技 术,被认为是最具应用前景的碳捕集技术之一,借 助在空气反应器(Air Reactor, AR)和燃料反应器 (Fuel Reactor, FR)之间循环的载氧体颗粒传递晶 格氧,能够有效避免传统燃烧中燃料和空气的直 接接触,理论上使得燃烧烟气只有 CO₂和水,燃烧 烟气再经过简单冷凝后即可得到纯净 CO₂^[1-3]。更 重要的是,CLC 固有的 CO₂ 分离功能可显著降低 碳捕集成本和能耗^[4]。燃料的热利用不可避免地 影响污染物的产生、控制和去除。目前,化学链燃 烧的研究重点主要为探索污染气体(如 NO_x、SO₂、 H₂S、Hg 等)的排放以及燃料中存在的酸性元素对 氧载体的腐蚀作用^[5-8]。

在含氯污染物(HCl、Cl₂、二噁英和呋喃(PCDD/ Fs))中, PCDD/Fs 会严重危害人体健康,因此研究 者较关注 PCDD/Fs, HCI 往往会对锅炉等设备造 成严重的腐蚀, 但对 HCI 研究相当缺乏。氯是生 物质中的微量元素^[9], 通常以无机氯和有机氯形式 存在。WANG 等^[10] 指出, 在生物质的气化过程中 氯的迁移转化特性与生物质类型、锅炉类型及工 作条件密切相关。郭献军^[11] 系统研究了生物质燃 烧过程中氯化物的生成特性, 发现温度对 CI 的析 出影响最大, 且析出 CI 随温度升高而增加。 JOHANSEN 等^[12] 观察到, 当燃烧温度超过 700 ℃时, 生物质中 CI 和 K 的释放密切相关, 当温度高于 800 ℃时, CI 将完全释放, 而在热解 时, CI 完全释放所需的温度将会更高。KASSMAN 等^[13] 的研究表明, 生物质中的 CI 主要以 HCI 和 KCI 的形式释放, KCI 的磺化虽能有效降低 KCI 的释放, 但同时会促进 HCI 的释放。

碱金属固氯是通过物理或化学吸附的方式将 析出的 HCl 捕获并保留在固体产物中,常见的吸 附剂有 K、Ca、Na、Ba、Mg、Sr 等。利用碱金属 (K、Ca、Na)修饰的 Fe 基氧载体可通过吸附 HCl 降低多氯二苯及 PCDD/Fs 总量和毒性当量^[14-15]。 然而,鉴于 KCl 和 NaCl 熔点相对较低,分别为 770 ℃和 801 ℃,因此在高温锅炉中添加钾基或 钠基吸附剂会增加炉内腐蚀和沉积的风险[16-17], 进而影响燃烧效率。相比之下, Ca 基和 Ba 基吸 附剂因高效的除氯性能而广受青睐。Ca 基吸附 剂可以直接掺入燃料,实现燃烧中脱氯。CAO等^[18] 发现 CO,浓度越高,吸附剂的固氯效果越差,且水 蒸气的存在会导致 CaClOH 成为主要固氯产物, 使固氯效率降低,但在高温下这种影响会变小^[19]。 高温(700~1100 ℃)条件下, CaO 吸附剂固氯效率 的剧烈下降是制约其燃烧中固氯应用的最大 障碍^[20]。LIU 等^[21] 通过水热法合成 Ba-Al 修饰的 铁矿石氧载体能够有效去除合成气中的 HCl, Ba-Al 涂层增强了晶格氧活性,同时提高了氧载体的 还原性。平衡分布模拟显示,在 400~1 300 ℃条 件下, Ba 基吸附剂对 HCl 的吸附能力始终保持不 变。在合成气化学链燃烧实验中,与Ca改性铁矿 石相比, Ba 或 Sr 改性铁矿石表现出更高的固氯性 能和燃烧性能^[22]。WANG等^[23]制得的 BaCO₃ 和 铁矿直接混合的氧载体,在合成气的化学链燃烧 中同样表现出优秀的高温固氯能力。然而,大多 数研究围绕 Fe 基氧载体进行, 只有少数研究深入 探讨了碱土金属对氧载体活性成分的保护作用。 Cu作为一种催化活性显著的成分,通常与 Fe₂O₃等其他物质一起使用,以增强氧载体的整体 反应活性。对 Cu 基载氧体而言, 活性相 CuO 的 损失是 CuCl 和 (Cu₃Cl)₃ 的形成引起的^[24],因此有 必要对 Cu 基氧载体抗氯性能进一步研究。

本研究通过在 Cu 基氧载体上掺杂 Ca/Ba 进行改性, 配制具有更强固氯和抗氯能力的复合氧载体; 通过化学链燃烧实验分析掺杂 Ca/Ba 的 Cu 基氧载体关键性能, 验证气体燃料化学链燃烧 中复合氧载体的固氯效果, 并应用于生物质化学链燃烧, 分析其固氯特性。最后采用 X 射线衍射 (XRD)、扫描电子显微镜(SEM)和 Brunauer-Emmett-Teller(BET)测量法对 3 种氧载体进行综合表征和分析, 并对其固氯和抗氯性能进行评估。

1 实验部分

1.1 实验材料

本研究所用试剂: Al(C₃H₇O)₃(阿拉丁, 纯

度≥98%)、HNO₃(国药,环境级,67%~70%)、 Ca(NO₃)₂·4H₂O(国药,AR,≥99.0%)、Ba(NO₃)₂(阿 拉丁,AR,≥99.5%)、Cu(NO₃)₂·3H₂O(国药,AR, ≥99%)。

本文选取松木屑作为固体燃料,实验前需将 生物质置于真空干燥箱 105 ℃下干燥 24 h 以去 除水分,破碎烘干后的样品筛选粒径范围为 150~ 350 µm 的颗粒作为固体燃料使用。松木屑(收到 基)的工业分析和元素分析见表 1。

表 1 松木屑的工业分析和元素分析 Table 1 Industrial and elemental analyses of pine wood chips

工业分析				元素分析				
M	V	FC	A	w(C)	w(H)	<i>w</i> (S)	w(N)	w(O)*
18.60	77.16	0.88	3.36	47.07	5.82	0.24	0.17	41.46

注:*用差值法计算O含量。

氧载体采用溶胶凝胶法制备,制备方法如下: (1)将Al(C₃H₇O)₃溶解在去离子水中,并将其置 于85℃水浴中水解2h,加入1mol/LHNO₃,然后 将水浴温度提高到90℃,老化12h,得到勃姆石 γ -AlOOH溶胶;(2)将Ca(NO₃)₂·4H₂O或Ba(NO₃)₂ 溶液分散到勃姆石 γ -AlOOH溶胶中,随后加入 Cu(NO₃)₂·3H₂O溶液,在90℃水浴中搅拌完全, 形成湿凝胶;(3)将湿凝胶置于干燥箱中90℃干 燥20h,120℃干燥10h,150℃干燥5h,180℃ 干燥5h,得到前驱体;(4)将前驱体置于马弗炉中 分别在500℃和1000℃下各煅烧5h和10h,得 到Cu氧载体、Ca-Cu氧载体或Ba-Cu氧载体,并 对各氧载体进行研磨,筛分至粒径为0.15~0.35 mm, 得到最终氧载体颗粒。

经X射线荧光光谱(XRF)检测,溶胶凝胶法制备的氧载体组分见表2。Cu氧载体、Ca-Cu氧载体和Ba-Cu氧载体的活性CuO含量约为50%,Ca-Cu氧载体和Ba-Cu氧载体分别负载了0.15mmolCa和0.15mmolBa,其余组分可视为惰性负载。

表 2 氧载体组分

氧载体	CuO	Al_2O_3	CaO	BaO	其他
Cu氧载体	48.573	50.929	0	0	0.499
Ca-Cu氧载体	47.311	51.311	1.171	0	0.413
Ba-Cu氧载体	45.285	52.055	0	2.396	0.264

%

1.2 实验装置

本文以批次流化床作为模拟化学链燃烧过程 的实验装置,该装置主要由供气系统、石英管反应 器和烟气分析系统组成。图1为批次流化床装置 示意图。

图1 批次流化床装置示意图

Fig. 1 Schematic of the batch fluidized bed reactor

石英管反应器分为上下2段,反应器下部和 上部的内径分别为 20 mm 和 35 mm, 这样可以避 免氧载体颗粒因流化气速过大而聚集在反应器顶 部,2块多孔布风板的间距为100mm,下层布风板 用于分配气流,上层布风板用于防止细小颗粒逸 出。供气系统能够模拟多种热处理过程所需的气 氛,包括N₂、CO₂、空气和标准HCl气体(N₂平 衡),氧化阶段以空气和 N₂的混合气作为流化气; 还原阶段以 N₂、CO₂的混合气作为流化气,其中 CO2 是为了促进生物质的气化,还原阶段前以 N2和 CO2的混合气作为吹扫气,还原阶段后仅以 N,作为吹扫气。燃料通过高压 N,脉冲送入石英 管内。供气系统的质量流量计(Alicat MC)由配套 软件脚本控制,避免了电磁阀的缺陷,增强了实验 的稳定性。烟气分析系统包括烟气分析仪 (Gasboard 3 100, 武汉四方光电)和在线气体分析 仪(TY-8 520, 武汉天禹智控), 烟气中的 CO、 CO₂、H₂和O₂由烟气分析仪测定,HCl由在线气 体分析仪测定。烟气分析仪和在线气体分析仪的 量程均已标注在图 1 中,其中 CO、CO₂、CH₄ 的测 量精度为±1% 满量程(F.S.), H₂和O₂的测量精 度为±2% 满量程(F.S.), 在线气体分析仪的测量 精度为±2% 满量程(F.S.),在线气体分析仪配备 了激光探测器,2种满量程(F.S.)0~1×10⁻⁶和 0~4×10⁻⁶可供切换。

1.3 实验工况

在温度为 850 ℃、氧燃比为 1.5 工况下进行 生物质化学链脱氯实验,初步验证 Ca-Cu 氧载体 和 Ba-Cu 氧载体的脱氯性能和燃烧性能。所有工况的床料量均为 15g。单次氧化还原过程分为 4个步骤,分别为氧化过程、吹扫及 CO₂平衡过程、还原过程和吹扫过程,氧化过程通入 1 L/min N₂ + 0.5 L/min 空气混合气,持续 240 s;吹扫及 CO₂平衡过程通入 1 L/min N₂ + 0.2 L/min CO₂ 混合气,持续 70 s;还原过程通入 0.000 05% HCl + 0.2 L/min CO₂ +0.1 L/min CH₄,持续 40 s;吹扫过程通入 1 L/min N₂,持续 100 s。实验总气流量处于 1.0~1.4 L/min,而在线气体分析仪的最小气体流量要求为 1.0 L/min,因此出口烟气需由烟气分析仪和在线气体分析仪交替检测。进行 20 次氧化还原循环,每次实验前单独检测还原过程中混合气的 HCl 浓度,确保其始终稳定在 5×10⁷。

1.4 数据处理

实验过程中氧燃比、还原过程 CO 和 CO₂ 的 产率以及出口烟气的总流量根据文献中所提及的 公式计算^[25]。

燃烧效率代表燃料的燃烧程度,也是载氧体 反应性能的衡量指标,定义为在整个还原周期内 引入燃料完全转化为 CO₂ 和 H₂O 的比例,松木屑 的燃烧效率计算见式(1)。

$$\phi = 1 - \frac{\int \left(V_{\rm CO} + V_{\rm H_2} + 2V_{\rm CO_2} \right) dt}{22.4m_{\rm c}/12} \tag{1}$$

式中: ϕ 为松木屑的燃烧效率, %; V_{co} 和 V_{H_2} 分别表示还原阶段烟气中 CO、H₂的体积流量, L/min; V_{CO_2} 表示氧化阶段烟气中 CO₂的体积流量, L/min; m_c 表示固体燃料中碳的总质量, g_o

脱氯效率计算需确定统一基准,规定无氧载体且相同实验条件下,HCl的释放量按化学链燃烧的方式计算,其计算公式如式(2)。对固体燃料而言,规定在相同实验条件下,不装载氧载体的燃料气化过程的HCl释放量即为*n*_{refer}。

$$\eta = \left(1 - \frac{n_{\text{out}}}{n_{\text{refer}}}\right) \times 100\% \tag{2}$$

式中: η 为脱氯效率,%; n_{out} 表示氧化还原过程中释放的 HCl 摩尔量, mol; n_{refer} 表示 HCl 的参考摩尔量, mol。

2 生物质化学链燃烧特性

2.1 气体浓度

生物质的 Cl 含量比 CH₄ 高,因此在相同条件 下生物质会释放更高浓度的 HCl。图 2显示了温 度为 850 ℃、氧燃比为 1.5 的工况下,使用 3 种不 同的氧载体进行生物质化学链燃烧脱氯的烟气浓度曲线。因为采用 CO₂ 作为气化介质,有一定量的生物质焦未被气化,所以在氧化阶段出现了二次 CO₂ 峰,说明还原阶段生物质焦转化不充分,降低了化学链燃烧过程中 CO₂ 捕集率。在还原阶段, CO₂ 的峰高和峰宽表现出较大差异,如图 2(d)所示。使用 Cu、Ca-Cu、Ba-Cu 氧载体进行生物质化学链燃烧脱氯后烟气中 CO₂ 峰值分别是 33.0%、35.3%、38.6%,峰高分别是 10.6%、13.7%、16.7%。不同氧载体的峰宽大致相等, Ca-Cu 或 Ba-Cu 氧载体在生物质化学链燃烧烟气中 CO₂ 峰值和峰高

明显高于 Cu氧载体。这说明 Ca-Cu和 Ba-Cu 氧载体因碱金属掺杂,较高的反应活性促进了生物质气化气组分的快速转化。在氧化阶段,使用 Cu、Ca-Cu、Ba-Cu氧载体进行生物质化学链燃烧 脱氯后烟气中的 CO2峰值分别为 4.0%、1.7%、 3.2%,表明掺杂 Ca/Ba 的氧载体在一定程度上强 化了对生物质焦的气化,减少了还原阶段生物质 的残炭量。还原阶段中,均未检测到 H2和 CH4 信 号,说明氧载体对低浓度 H2和 CH4转化较为完 全。CO峰值分别是 0.08%、0.07%和 0.06%,说明 氧载体对 CO 的转化较充分。

Fig. 2 Flue gas concentrations for biomass chemical looping combustion

2.2 温度对燃烧性能和脱氯性能的影响

图 3(a)(b)分别是在不同温度下生物质化学 链燃烧烟气中 CO₂和 CO 的浓度。当温度从 800 ℃ 升高到 900 ℃,还原阶段 Cu 氧载体进行生物质化 学链燃烧脱氯后烟气中 CO₂浓度从 99.2% 提高 到 99.3%, CO 平均浓度则从 0.8% 降低至 0.7%; Ca-Cu 氧载体进行生物质化学链燃烧脱氯后烟气 中的 CO₂浓度从 99.0% 提高到 99.2%,比同温度 下 Cu 氧载体的 CO₂浓度低 0~0.2%; Ba-Cu 氧载 体进行生物质化学链燃烧脱氯后烟气中的 CO₂ 浓 度从 99.2% 提高到 99.3%,与同温度下 Cu 氧载体 的 CO₂ 浓度基本持平。相同温度下,在生物质化 学链燃烧还原阶段 Ca-Cu 氧载体进行生物质化学 燃烧脱氯后烟气中 CO₂ 浓度始终低于 Cu 氧载体, 而 Ba-Cu 氧载体的 CO₂ 浓度仅在 800 ℃ 和 850 ℃ 时略高于 Cu 氧载体,在 900 ℃ 时低于 Cu 氧载 体。实验表明,由于生物质 Cl 含量较高,对氧载 体的冲击明显, Ca 可结合 Cl 生成 CaCl₂,但 CaCl₂

Fig. 3 Variation of CO₂ and CO concentrations with temperature in the flue gas of biomass chemical looping combustion

熔点低,可能会熔融覆盖在 Cu 氧载体表面导致其 气固接触程度降低,使可燃气被活性组分 Cu 氧化 份数减少,导致 Ca-Cu 氧载体进行生物质化学链 燃烧时烟气中 CO₂ 浓度下降。

图 4 为生物质化学链燃烧效率随温度的变 化,当温度从 800 ℃ 升高到 900 ℃ 时,Cu 氧载体 的燃烧效率从 87.0% ± 0.5% 增加到 94.7% ± 0.4%,最大增幅为 8.6%;Ca-Cu 氧载体的燃烧效率 从 95.6% ± 0.6% 缓慢减小至 95.2% ± 0.1%,最大 降幅为 1.1%;Ba-Cu 的燃烧效率从 88.0% ± 1.6% 增加到 94.7% ± 0.4%,最大增幅为 8.7%。Ca-Cu 氧载体表现出更高的温度稳定性,而温度对 Ba-Cu 氧载体的燃烧效率具有显著影响。Ca-Cu、Ba-Cu 氧载体的燃烧效率分别比 Cu 氧载体高 0.5%~ 0.6%、0~1.0%。在生物质化学链燃烧中,温度对 Ba-Cu 氧载体和 Cu 氧载体的燃烧效率的影响较 为类似,在较高温度下可减少生物质残炭的生成; Ca-Cu 氧载体更适合于温度较低的工况,因为较

低温度可以减少 Ca-Cu 氧载体表面熔融态的 CaCl₂。900 ℃时,3 种氧载体的燃烧效率更加接 近,掺杂 Ca/Ba 对于燃烧效率的提升不再明显。

在基准实验中,800、850和900℃条件下释 放的 HCl 的摩尔量分别是($6.0 \times 10^{-7} \pm 3.6 \times 10^{-8}$)、 ($6.6 \times 10^{-7} \pm 1.0 \times 10^{-8}$)和($5.6 \times 10^{-7} \pm 1.2 \times 10^{-8}$)mol (图 5)。Ca-Cu 和 Ba-Cu 氧载体的固氯效率始终 为 100%。在同一反应温度及 HCl 进气浓度情况 下,Cu 氧载体表面活性 CuO 与 HCl 反应剧烈,固 氯效率低,因此 Cu 氧载体不适合长时间应用于生 物质的化学链燃烧。Ca-Cu 和 Ba-Cu 氧载体的固 氯效率基本比 Cu 氧载体高 10% 以上,掺杂 Ca/Ba 均能取得良好的固氯效果,高浓度的 HCl 能够促 进 CaO 或 BaO 的氯化反应(式(3)(4)),最大程度 保护活性 CuO,抑制氧载体的氯中毒反应。

$$CaO + 2HCl = CaCl_2 + H_2O \qquad (3)$$

BaO + 2HCl = BaCl_2 + H_2O (4)

2.3 氧燃比对固氯效率的影响

在 850 ℃下,研究了氧燃比对物质的化学链 燃烧固氯效率的影响。如图 6 所示,随着氧燃比 的逐渐增大,HCl 的释放量逐渐减少。氧燃比为 1.5、2.0 和 2.5 时,单次循环燃料的质量比 3:2:1。 增大氧燃比,在抑制 HCl 释放的同时,显著提高固 氯效率。通过改变生物质的投入量,观察到不同 氧燃比下 HCl 的释放量大致符合 3:2:1 的关系 (实际约为 3:2:0.9),HCl 的释放量减少的比例 与生物质质量减少的比例相当。这表明提高氧燃 比并不会影响生物质中 Cl 向 HCl 的转化比例。 在生物质化学链燃烧中,氧燃比由 1.5 提高至 2.0 时,Cu 氧载体的固氯效率由 84.3% ± 6.3% 增 加到 96.3% ± 1.2%。Ca-Cu 氧载体和 Ba-Cu 氧载 体始终保持 100% 的固氯效率。因此,在生物质 脱氯中可选择低氧燃比以减少碳捕集运行成本。

2.4 氧载体表征分析

新鲜样品和反应后样品的 BET 结果见表 3。 反应后的 3 种样品的比表面积、孔容及孔径均发 生了不同程度的变化。Cu 氧载体的比表面积由 1.17 m²/g 增加到 1.37 m²/g, 孔容和孔径基本没有 发生变化。Ca-Cu 新鲜载氧体的比表面积和孔容 比 Cu 载氧体提升了 4.51 倍和 14.89 倍, Ba-Cu 新 鲜载氧体的比表面积和孔容比 Cu 载氧体的提升 了 5.30 倍和 11.21 倍, 且 Ca/Ba 掺杂样品在反应 后其孔径均发生了较为明显的增加。因此, 可以 推断碱金属 Ca/Ba 的掺杂优化了氧载体的颗粒结 构, 进而提高了生物质与活性相 CuO 的接触效 率, 从而提升了氧载体的反应活性。

对Cu、Ca-Cu和Ba-Cu3种氧载体的新鲜氧

表 3 Cu、Ca-Cu 和 Ba-Cu 载氧体的比表面积、 孔容和孔径

Table 3Specific surface area, pore volume and pore sizeof Cu, Ca-Cu and Ba-Cu oxygen carriers

样品	比表面积/(m ² ·g ⁻¹)	孔容/(cm ³ ·g ⁻¹)	孔径/nm
Cu新鲜	1.17	0.001 9	77.96
Cu反应后	1.37	0.001 6	91.59
Ca-Cu新鲜	5.28	0.028 3	176.90
Ca-Cu反应后	12.34	0.086 1	220.75
Ba-Cu新鲜	6.20	0.021 3	137.40
Ba-Cu反应后	8.41	0.040 5	192.39

化态样品和反应后的还原态样品表面形貌(SEM) 进行表征。如图 7 所示,经过 20 次氧化还原循环 反应后,未掺杂氧载体颗粒结构完整,而掺杂样品 出现裂纹或断裂现象。新鲜 Cu 氧载体的团簇结 构直径 1~2 μm,经 20 次氧化还原循环后其团簇直 径增大,并且呈现轻微的烧结,这是氧载体燃烧性 能下降的原因。在反应后的 Ca-Cu 和 Ba-Cu 氧载 体样品表面均出现了断裂以及部分 CuO 局部团 簇。在 EDS 元素分布中(图 8),Ca 元素/Ba 元素 均匀分布在 Ca-Cu/Ba-Cu 载氧体颗粒表面。反应 后样品 Cu、Ca-Cu、Ba-Cu 的 Cl含量由 0、0.05%、

Fig. 7 SEM of oxygen carriers before and after reaction

注: A1、B1、C1 分别为新鲜 Cu、Ca-Cu、Ba-Cu; A2、B2、C2 分别为反应 后 Cu、Ca-Cu、Ba-Cu,下同。

图 8 生物质化学链固氯中氧载体的 EDS

Fig. 8 EDS of oxygen carriers in chlorine fixation in biomass chemical looping combustion

0 增加到 0.13%、0.30% 和 0.23%(质量分数),说明 Cu、Ba-Cu 和 Ca-Cu 氧载体固定了一定的氯。

各氧载体的 XRD 谱图如图 9 所示。在所有 新 鲜 氧 载 体 中, CuO、CuAl₂O₄ 晶 相 对 应 的 XRD 峰占主导地位。在 Ba-Cu 氧载体中检测到 BaAl₂O₄, Ca-Cu 氧载体中检测到 CaO(Al₂O₃)₂。在 反应后的 Cu 氧载体(A2)中检测到 CuCl₂ 的 XRD 峰, 在反应后的 Ca-Cu(B2) 和 Ba-Cu(C2) 氧载体 中分别检测到 CaCl₂ 和 BaCl₂ 的 XRD 峰, 且未检 测到 CuCl 的 XRD 峰, 说明固氯碱金属可有效保 护活性 CuO 免受 HCl 的腐蚀。

3 结 论

本文研究了 Ca-Cu 和 Ba-Cu 氧载体的固氯性 能和化学链燃烧性能,并将抗氯 Cu 基氧载体成功 应用于生物质的化学链燃烧,得出的结论如下。

(1) Ca-Cu 和 Ba-Cu 中碱土金属易与 HCl 形成稳定的氯化物,减少 Cl 对氧载体、锅炉受热面等的腐蚀;掺杂 Ca/Ba 能够提升氧载体的晶格氧活性,进而显著促进气固反应的进行,即掺杂 Ca/Ba 可提高氧载体的固氯能力。

(2)在生物质化学链燃烧中,掺杂 Ca/Ba 的氧 载体在一定程度上强化了对生物质焦的气化,对 低浓度 H₂、CH₄和 CO 的转化较为完全。Ca-Cu 氧载体表现出更高的温度稳定性,而温度对 Ba-Cu 氧载体的燃烧效率具有显著影响,且提高氧燃 比并不会影响生物质中 Cl 向 HCl 的转化比例。 因此,在生物质脱氯中可选择低氧燃比以减少碳 捕集运行成本。

(3) 掺杂 Ca/Ba 可增大氧载体比表面积和孔

图 9 生物质化学链固氯中氧载体的 XRD

Fig. 9 XRD of oxygen carriers in chlorine fixation in biomass chemical looping combustion

容, Ca-Cu 新鲜氧载体的比表面积和孔容比 Cu 氧 载体的提升了 4.51 倍和 14.89 倍, Ba-Cu 新鲜氧载 体的比表面积和孔容提升了 5.30 倍和 11.21 倍。 比表面积与孔容的增加可提高氧载体与生物质接 触面积,提高其化学链燃烧性能。

参考文献 (References):

- ZHAO Haibo, TIAN Xin, MA Jinchen, et al. Development of tailor-made oxygen carriers and reactors for chemical looping processes at Huazhong University of Science & Technology[J]. International Journal of Greenhouse Gas Control, 2020, 93: 102898.
- [2] LI Heyu, SUN Zhe, TIAN Lijun, et al. The investigation on the attrition of hematite oxygen carrier particles in a fluidization-based chemical looping system[J]. Fuel Process-

ing Technology, 2022, 236: 107441.

- [3] LIU Lei, LI Zhenshan, LI Zuoan, et al. Fast redox kinetics of a perovskite oxygen carrier measured using microfluidized bed thermogravimetric analysis[J]. Proceedings of the Combustion Institute, 2021, 38(4): 5259-5269.
- [4] DANESHMAND JAHROMI S, SEDGHKERDAR M H, MAHINPEY N. A review of chemical looping combustion technology: Fundamentals, and development of natural, industrial waste, and synthetic oxygen carriers[J]. Fuel, 2023, 341: 127626.
- [5] GAO Peng, ZHENG Min, LI Kang, et al. Characteristics of nitrogen oxide emissions from combustion synthesis of a CuO oxygen carrier[J]. Fuel Processing Technology, 2022, 233: 107295.
- [6] MA Jinchen, MEI Daofeng, WANG Chaoquan, et al. Sulfur fate during *in situ* gasification chemical looping combustion (iG-CLC) of coal[J]. Chemical Engineering Journal, 2021, 406: 126773.
- [7] MA Jinchen, WANG Chaoquan, ZHAO Haibo, et al. Sulfur fate during the lignite pyrolysis process in a chemical looping combustion environment[J]. Energy & Fuels, 2018, 32(4): 4493-4501.
- [8] MENDIARA T, IZQUIERDO M T, ABAD A, et al. Mercury release and speciation in chemical looping combustion of coal[J]. Energy & Fuels, 2014, 28(4): 2786-2794.
- [9] WU Yuting, LIAO Yanfen, LIU Guicai, et al. Reactivity investigation on biomass chemical looping conversion for syngas production[J]. Journal of the Energy Institute, 2019, 92(4): 1137-1148.
- [10] WANG Yuefeng, QIN Yuhong, VASSILEV S V, et al. Migration behavior of chlorine and sulfur during gasification and combustion of biomass and coal[J]. Biomass and Bioenergy, 2024, 182: 107080.
- [11] 郭献军. 生物质燃烧氯的析出与控制研究 [D]. 武汉:华中科技大学,2009:47-70.
 GUO Xianjun. Study on the precipitation and control of chlorine in biomass combustion[D]. Wuhan: Huazhong University of Science and Technology, 2009:47-70.
- [12] JOHANSEN J M, JAKOBSEN J G, FRANDSEN F J, et al. Release of K, Cl, and S during pyrolysis and combustion of high-chlorine biomass[J]. Energy & Fuels, 2011, 25(11): 4961-4971.
- [13] KASSMAN H, PETTERSSON J, STEENARI B M, et al. Two strategies to reduce gaseous KCl and chlorine in deposits during biomass combustion—Injection of ammonium sulphate and co-combustion with peat[J]. Fuel Processing Technology, 2013, 105: 170-180.
- [14] ZHAO Haibo, WANG Jinxing. Chemical-looping combustion of plastic wastes for *in situ* inhibition of dioxins[J]. Combustion and Flame, 2018, 191: 9-18.

- [15] GE Huijun, SHEN Laihong, SONG Tao, et al. Study on the migration characteristics of sodium and chlorine in chemical looping process of ZhunDong coal with hematite oxygen carrier[J]. Energy & Fuels, 2019, 33(2): 1489-1500.
- [16] BLÄSING M, MÜLLER M. Release of alkali metal, sulphur, and chlorine species from high temperature gasification of high- and low-rank coals[J]. Fuel Processing Technology, 2013, 106: 289-294.
- [17] BLÄSING M, NAZERI K, MÜLLER M. Release of alkali metal, sulphur and chlorine species during high-temperature gasification and co-gasification of hard coal, refinery residue, and petroleum coke[J]. Fuel, 2014, 126: 62-68.
- [18] CAO Songshan, CAO Jun, ZHU Hualun, et al. Effect of CO₂ on HCl removal from syngas using normal and modified Ca-based hydrotalcites: A comparative study[J]. Fuel Processing Technology, 2023, 252: 107997.
- [19] 王蕊,王贵全,田君国,等.水蒸气存在下氧化钙脱氯性 能的实验研究 [J]. 工程热物理学报,2010,31(3):519-522.
 WANG Rui, WANG Guiquan, TIAN Junguo, et al. An experimental investigation on the effect of steam to HCI removal capability by CaO[J]. Journal of Engineering Thermophysics, 2010, 31(3):519-522.
- [20] 谢辛,李英杰. 钙基吸收剂脱除 HCl 的研究进展 [J]. 化工进展, 2013, 32(8): 1921-1928.
 XIE Xin, LI Yingjie. Research progress in HCl removal using Ca-based sorbents[J]. Chemical Industry and Engineering Progress, 2013, 32(8): 1921-1928.
- [21] LIU Guicai, WANG Haiming, DEPLAZES S, et al. Ba–Al-decorated iron ore as bifunctional oxygen carrier and HCl sorbent for chemical looping combustion of syngas[J]. Combustion and Flame, 2021, 223: 230-242.
- [22] LIU Guicai, WANG Haiming, VEKSHA A, et al. Chemical looping combustion-adsorption of HCl-containing syngas using alkaline-earth coated iron ore composites for simultaneous purification and combustion enhancement[J]. Chemical Engineering Journal, 2021, 417: 129226.
- [23] WANG Haiming, LIU Guicai, BOON Y Z, et al. Dualfunctional witherite in improving chemical looping performance of iron ore and simultaneous adsorption of HCl in syngas at high temperature[J]. Chemical Engineering Journal, 2021, 413: 127538.
- [24] MA Jinchen, HUANG Haodong, ZHENG Chaohe, et al. Identification of HCl corrosion mechanism on Cu-based oxygen carriers in chemical looping combustion[J]. Fuel, 2024, 359: 130373.
- [25] HUANG Haodong, MA Jinchen, ZHAO Haibo, et al. Behavior of coal-chlorine in chemical looping combustion[J].
 Proceedings of the Combustion Institute, 2023, 39(4): 4437-4446.