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Abstract: Fiber-reinforced polymers (FRPs), composed of reinforcing fibers and resin matrices,
exhibit outstanding characteristics such as low density, high strength, corrosion resistance, and superior
mechanical performance. With the large-scale application of FRPs in the renewable energy industry,
such as wind turbine blades (WTBs), nacelles, photovoltaic brackets, electric vehicle components, and
battery storage enclosures, the decommissioning of large-scale FRP structures has become an
increasingly pressing issue. The complex composition of end-of-life materials, the inherent difficulty in

separating thermosetting resins, and the underdeveloped recycling infrastructure make it crucial to
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achieve efficient and environmentally friendly recycling, prevent environmental pollution, and facilitate
circular resource recovery. This article focuses on recycling solutions for FRPs in the renewable energy
sector, systematically reviewing recycling technologies and highlighting innovations in three main
process types: mechanical, pyrolytic, and chemical recycling. Mechanical recycling technologie,
through intelligent precision cutting and automatic sorting, effectively reduce fiber damage and enhance
the application potential of recycled materials. Pyrolysis recycling technologies encompass high-
temperature pyrolysis, fluidized bed pyrolysis, and microwave-assisted pyrolysis. By precisely
controlling the temperature and reaction atmosphere, they significantly reduce thermal damage to fibers,
yielding a fiber performance retention rate of over 90%; the resulting pyrolysis oil and gas are reused as
valuable resources. Chemical recycling technologies, such as chemical swelling and supercritical fluid
processes, achieve efficient fiber recovery by selectively breaking the chemical bonds at the resin-fiber
interface. This study further highlights the development trends in fiber repair and interfacial
modification technologies. Intermediate repair techniques, such as sol-gel coating, plasma surface
treatment, and electrochemical oxidation, improve the interfacial performance between regenerated
fibers and resin matrices by 15% to 40%, significantly enhancing the overall mechanical properties and
durability of regenerated composite materials. In terms of high-value utilization pathways, regenerated
fibers have been successfully applied in lightweight automotive components, aerospace structures, and
components for ultra-large offshore wind components, through innovative additive manufacturing
technologies and the combined use of interfacial compatibilizers, significantly promoting the large-scale
application of regenerated materials in high-end sectors. In addition, by treating by-products such as
pyrolysis oil and gas through catalytic cracking, hydrodeoxygenation, and Fischer-Tropsch synthesis,
high-value-added aromatic chemicals, fuel oils, and high-purity hydrogen can be obtained, further
enhancing the economic benefits of resource recovery. Lastly, the article proposes recommendations for
full value-chain integration, the development of standardized systems, and intelligent digital control,
emphasizing the need to establish a circular ecosystem that spans front-end pretreatment, intermediate-
stage repair and regeneration, and back-end high-value applications to support the sustainable
development of the renewable energy industry.

Keywords: FRPs; Resins; Recycling technologies; Modification technologies; Application
pathways
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Fig. 1 Global cumulative end-of-life volume of fiber-

reinforced polymers from 2010 to 2050
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Fig.2 Schematic structure of a wind turbine generator
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Table 1 Policy documents, national standards, local standards, and industry standards in the

field of fiber-reinforced polymers recycling
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Fig.3 (a) Swelling process of fiber-reinforced polymers.
(b) Microscopic mechanism of swelling in

fiber-reinforced polymers
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